DarkDistill

2025-08-05

DarkDistill: Difficulty-Aligned Federated Early-Exit Network Training on Heterogeneous Devices

Lehao Qu¹, Shuyuan Li², Zimu Zhou²,
Boyi Liu^{1,2}, Yi Xu¹, Yongxin Tong¹

¹Beihang University

²City University of Hong Kong

Outline

Background & Motivation

Problem Statement

Our Solutions

Experiments

Conclusion

Outline

Background & Motivation

Problem Statement

Our Solutions

Experiments

Conclusion

Background & Motivation

Early-Exit Network (EEN)

B Block C C Classifier

Difficulty-increased inference samples

Traffic Analysis

Autonomous Driving

Well-being Monitoring

Background & Motivation

Difficulty-aware EEN Training

B Block C C Classifier

Difficulty-increased training samples

Training objective

$$\mathcal{L}(\theta; D) = \sum_{m=1}^{M} \omega^{m} \mathcal{L}^{m}(\theta; D) = \sum_{m=1}^{M} \omega^{m} \sum_{i=1}^{|D|} l_{i}^{m}$$

Core ideas

- 1) BoostNet: Directing samples misclassified by shallow exits to deep ones
- 2) L2w: Increasing the weight of complex samples on training deep exits

Background & Motivation

Federated learning EEN training

Local EEN Training

Decentralized training datasets

Outline

Background & Motivation

Problem Statement

Our Solutions

Experiments

Conclusion

Problem Statement

Federated EEN Training on Heterogeneous Devices

Heterogeneous Resource

Problem Statement

Federated EEN Training on Heterogeneous Devices

Heterogeneous Resource

Cross-model Exit Unalignment

Exits at equivalent depths may handle samples from disparate difficulty ranges across models

B Block C Classifier

Difficulty-increased training samples

Challenge: How to solve the Unalignment?

Outline

Background & Motivation

Problem Statement

Our Solutions

Experiments

Conclusion

- DarkDistill: Framework
 - Progressive Knowledge Distillation

Generator

Create pseudo-data for specific difficulties, supporting the knowledge distillation process

Progressive KD

Transfer knowledge from shallow to deep exits in adjacent layers across varied depth local EENs

DarkDistill: Workflow

Difficulty Assessment

Predict the difficulty of samples

Difficulty distribution p(d)

Samples

Difficulty Range

2. Produce

3. Download global model

Difficulty-Aligned KD

DarkDistill: Difficulty Assessment

- Inspired by Curriculum Learning, we utilize the loss of sample to respect its difficulty. The bigger the loss, the harder it is.
- In order to uniformly measure difficulty across clients, we leverage the global model to calculate the loss.

DarkDistill: Difficulty Assessment

- Inspired by Curriculum Learning, we utilize the loss of sample to respect its difficulty. The bigger the loss, the harder it is.
- In order to uniformly measure difficulty across clients, we leverage the global model to calculate the loss.

• Calculate difficulty distribution p(d) for *privacy*

- DarkDistill: Difficulty-Conditional Generator
 - Create pseudo-data for specific difficulty and label to simulate local datasets, supporting the knowledge distillation process

DarkDistill: Difficulty-Conditional Generator

 Create pseudo-data for specific difficulty and label to simulate local datasets, supporting the knowledge distillation process

- Training objectives
 - Classification: $\mathcal{L}_{ce}(\phi_m, \theta_m) = \mathbb{E}_{\tilde{\chi} \sim G_m(y,d,\epsilon;\phi_m)} \sum_{i=1}^m \text{CE}(\hat{y},y)$
 - \hat{y} is the predicted label for pseudo data \tilde{x} , minimizing m exits loss.
 - o Difficulty Simulation: $\mathcal{L}_{dif}(\phi_m, \theta_m) = \mathbb{E}_{\widetilde{x} \sim G_m(y, d, \epsilon; \phi_m)} |d \widehat{d}|$
 - Give difficulty $d \sim p(d)$, \widehat{d} is the predicted difficulty, minimizing the $|d \widehat{d}|$

DarkDistill: Difficulty-Aligned Reverse KD

 Model-wise: Transfer knowledge from shallow to deep exits in adjacent layers across varied depth local EENs

- DarkDistill: Difficulty-Aligned Reverse KD
 - Exit-wise: adaptive KD based on difficulty distance between exits across adjacent EENs

Model-wise KD

Exit-wise KD

- DarkDistill-PL: Framework
 - Parallel Variant for DarkDistill

Difficulty-Increased Generator

Generate pseudo data with increasing difficulty to simulate the difficulty range across various depth exits

Parallel KD

Directly transfer the ensemble knowledge in same depth exits across intermediate models into global model

Outline

Background & Motivation

Problem Statement

Our Solutions

Experiments

Conclusion

Experiments

Configuration

- Dataset: CIFAR100, SVHN, SpeechCommands
- Settings: 100 clients, divided into 4 levels with increasing compute capabilities (4 sizes of local model)
- Base Model: Deit-tiny (Transformer, 12 layers)
- Exit distribution: add exits at 3th, 6th, 9th, 12th layer
- Finetune methods: Full parameters, LoRA
- Total Epoch: 500

Experiments-Main Results

Performance of Anytime Inference

- Measures the accuracy of each exit assuming sufficient budgets
- DarkDistill and DarkDistill-PL with BoostNet are the top 2 on all datasets, and increase 2 percents in general

Finetune	Difficulty-aware	Approach	CIFAR-100 [19]			SVHN [30]	SpeechCmds [44]
			$\alpha = 0.1$	$\alpha = 1$	$\alpha = 1000$	24114 [20]	Speechemus [44]
Full	None	ExclusiveFL	$26.60_{\pm 3.10}$	$49.96_{\pm 11.48}$	$41.58_{\pm 7.01}$	85.28 _{±2.97}	87.00 _{±2.88}
		InclusiveFL [26]	$40.10_{\pm 2.03}$	$58.83_{\pm 6.98}$	$61.40_{\pm 7.01}$	$82.95_{\pm0.34}$	$91.90_{\pm 1.42}$
		ScaleFL [16]	$54.99_{\pm 10.61}$	$63.21_{\pm 9.14}$	$63.82_{\pm 9.87}$	$88.24_{\pm 0.78}$	$92.56_{\pm0.26}$
		DepthFL [18]	$40.70_{\pm 1.57}$	$59.01_{\pm 5.18}$	$61.71_{\pm 5.73}$	$83.45_{\pm0.43}$	$92.05_{\pm0.60}$
		ReeFL [23]	$59.24_{\pm 8.00}$	$63.37 {\scriptstyle \pm 7.72}$	$63.90_{\pm 8.68}$	$88.37_{\pm 1.27}$	$93.12_{\pm 1.14}$
	BoostNet [45]	ExclusiveFL	48.68 _{±13.66}	$57.57_{\pm 15.12}$	$58.65_{\pm 15.31}$	$87.30_{\pm 2.89}$	91.07 _{±2.58}
		InclusiveFL [26]	$57.10_{\pm 7.21}$	$62.96_{\pm 8.12}$	$64.01_{\pm 8.24}$	$87.86_{\pm 1.66}$	$92.91_{\pm 1.10}$
		ScaleFL [16]	$52.74_{\pm 13.82}$	$60.55_{\pm 11.93}$	$60.73_{\pm 10.80}$	$87.91_{\pm0.77}$	$92.03_{\pm0.37}$
		DepthFL [18]	$58.15_{\pm 6.73}$	$63.81_{\pm 6.34}$	$64.19_{\pm 6.73}$	$87.74_{\pm 1.01}$	$92.72_{\pm 0.64}$
		ReeFL [23]	$59.01_{\pm 7.98}$	$63.08_{\pm 9.03}$	$63.66_{\pm 7.31}$	$88.39_{\pm 1.28}$	$93.01_{\pm 1.18}$
		DarkDistill	$60.48_{\pm 7.93}$	$64.50_{\pm 7.97}$	$65.67_{\pm 7.48}$	$88.41_{\pm 1.46}$	$93.31_{\pm 1.13}$
		DarkDistill-PL	$61.05_{\pm 8.19}$	$65.12_{\pm 7.02}$	$65.49_{\pm 7.88}$	$88.48_{\pm 1.57}$	$93.42_{\pm 0.98}$

Experiments-Main Results

Performance of Budget Inference

- Measures the accuracy of a batch samples within given budgets
- DarkDistill and DarkDistill-PL can improve the accuracy over the baselines at various computation budgets.

Experiments-Module Ablation

Difficulty Assessment Module

- Verify the efficiency of difficulty assessment module
 - Left images are easier predicted by module
 - Right image are more difficult predicted by module

Complex contour, difficult to judge

Experiments-Module Ablation

- Difficulty-Conditional Generator
 - Pseudo data of the same category are divided into four different levels of clustering clusters

Experiments-Module Ablation

Difficulty-Conditional Generator

 Pseudo data of the same category are divided into four different levels of clustering clusters

The robustness of generator architecture

d_{ϵ}	d_h							
	64	128	256	512				
2	64.79 64.88	65.05 64.93	65.32 65.25	65.10 65.11				
16	65.38 64.91	65.20 65.09	65.37 64.65	65.18 65.51				
32	65.05 64.79	65.06 64.79	65.28 65.08	65.60 64.90				
64	65.15 64.92	65.74 64.93	64.91 64.55	65.06 65.05				
SOTA	64.19 _{±6.73}							

Outline

Background & Motivation

Problem Statement

Our Solutions

Experiments

Conclusion

Conclusion

- This paper introduces DarkDistill, a novel heterogeneous federated learning scheme dedicated for early-exit networks (EENs) and its parallel variant DarkDistill-PL for acceleration.
- We identify the cross-model exit unalignment problem, an unexplored challenge when extending difficulty-aware EEN training to federated contexts.

 We develop a difficulty-conditional generator training strategy and a difficulty-aligned reverse distillation scheme to aggregate EENs of varying depths into a global model that retains its difficultyspecific specialization.

DarkDistill: Framework

Progressive Reverse KD

transfer knowledge from shallow to deep exits in adjacent layers across varied depth local EENs

Difficulty-Conditional Generators

create pseudo-data for specific difficulties, supporting the knowledge distillation process

DarkDistill: Difficulty-Aligined Reverse Knowledge Distillation

Progressive Reverse KD

transfer knowledge from shallow to deep exits in adjacent layers across varied depth local EENs