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 Early-Exit Network (EEN)

Background & Motivation
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 Difficulty-aware EEN Training

Background & Motivation

Training objective
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Classifier

Difficulty-increased training samples

CB Block

Core ideas
1) BoostNet: Directing samples 
misclassified by shallow exits to 
deep ones
2) L2w: Increasing the weight of 
complex samples on training 
deep exits



 Federated learning EEN training
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 Federated EEN Training on Heterogeneous Devices

Problem Statement
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 Federated EEN Training on Heterogeneous Devices

Problem Statement

Challenge:
How to solve the Unalignment?
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Cross-model Exit Unalignment
Exits at equivalent depths may handle 
samples from disparate difficulty ranges 
across models

global model
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 DarkDistill: Framework
 Progressive Knowledge Distillation

Our Solutions

Generator
Create pseudo-data for specific 
difficulties, supporting the knowledge 
distillation process

Progressive KD
Transfer knowledge from shallow to 
deep exits in adjacent layers across 
varied depth local EENs



 DarkDistill: Workflow

Our Solutions
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 DarkDistill: Difficulty Assessment
 Inspired by Curriculum Learning, we utilize the loss of sample to 

respect its difficulty. The bigger the loss, the harder it is.
 In order to uniformly measure difficulty across clients, we leverage 

the global model to calculate the loss.

Our Solutions
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 DarkDistill: Difficulty Assessment
 Inspired by Curriculum Learning, we utilize the loss of sample to 

respect its difficulty. The bigger the loss, the harder it is.
 In order to uniformly measure difficulty across clients, we leverage 

the global model to calculate the loss.

 Calculate difficulty distribution �(�) for privacy

Our Solutions
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 DarkDistill: Difficulty-Conditional Generator
 Create pseudo-data for specific difficulty and label to simulate 

local datasets, supporting the knowledge distillation process

Our Solutions
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 DarkDistill: Difficulty-Conditional Generator
 Create pseudo-data for specific difficulty and label to simulate 

local datasets, supporting the knowledge distillation process

 Training objectives
o Classification: ℒ��(��, ��) = ��∼��(�,�,�; ��)  �=1

�   CE(�, �) 
 � is the predicted label for pseudo data �, minimizing � exits loss.

o Difficulty Simulation: ℒ���(��, ��) = ��∼��(�,�,�; ��) � − � 
 Give difficulty � ∼ �(�), � is the predicted difficulty, minimizing the |� − �|

Our Solutions
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 DarkDistill: Difficulty-Aligned Reverse KD
 Model-wise: Transfer knowledge from shallow to deep exits in 

adjacent layers across varied depth local EENs

Our Solutions
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 DarkDistill: Difficulty-Aligned Reverse KD
 Exit-wise: adaptive KD based on difficulty distance between 

exits across adjacent EENs

Our Solutions
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 DarkDistill-PL: Framework
 Parallel Variant for DarkDistill

Our Solutions

Difficulty-Increased Generator
Generate pseudo data with increasing 
difficulty to simulate the difficulty range 
across various depth exits

Parallel KD
Directly transfer the ensemble 
knowledge in same depth exits across 
intermediate models into global model
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Experiments

  Configuration

 Dataset: CIFAR100，SVHN，SpeechCommands
 Settings：100 clients, divided into 4 levels with increasing 

compute capabilities (4 sizes of local model)
 Base Model：Deit-tiny (Transformer, 12 layers)
 Exit distribution： add exits at 3th, 6th, 9th, 12th layer
 Finetune methods: Full parameters, LoRA
 Total Epoch： 500



Experiments-Main Results

 Performance of Anytime Inference
 Measures the accuracy of each exit assuming sufficient budgets
 DarkDistill and DarkDistill-PL with BoostNet are the top 2 on all 

datasets, and increase 2 percents in general



Experiments-Main Results

 Performance of Budget Inference
 Measures the accuracy of a batch samples within given budgets
 DarkDistill and DarkDistill-PL can improve the accuracy over the 

baselines at various computation budgets.



Single pigment, easy to judge Complex contour, difficult to judge

Consistent with human intuition, the difficulty assessment module is designed reasonably

Experiments-Module Ablation

 Difficulty Assessment Module
 Verify the efficiency of difficulty assessment module

o Left images are easier predicted by module
o Right image are more difficult predicted by module



Experiments-Module Ablation

 Difficulty-Conditional Generator
 Pseudo data of the same category are divided into four different 

levels of clustering clusters
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Experiments-Module Ablation

 Difficulty-Conditional Generator
 Pseudo data of the same category are divided into four different 

levels of clustering clusters

 The robustness of generator architecture
Fox                             Mouse                     Wolf
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 This paper introduces DarkDistill, a novel heterogeneous 
federated learning scheme dedicated for early-exit networks 
(EENs) and its parallel variant DarkDistill-PL for acceleration. 

 We identify the cross-model exit unalignment problem, an 
unexplored challenge when extending difficulty-aware EEN 
training to federated contexts.

 We develop a difficulty-conditional generator training strategy and 
a difficulty-aligned reverse distillation scheme to aggregate EENs 
of varying depths into a global model that retains its difficulty-
specific specialization. 

Conclusion



THANK YOU
if you have problems, feel free to email

lehaoqv@buaa.edu.cn
or talk with me at Poster 201, 5th August
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 DarkDistill: Framework

Our Solutions

Difficulty-Conditonal 
Generators
create pseudo-data for specific 
difficulties, supporting the 
knowledge distillation process

Progressive Reverse KD
transfer knowledge from shallow 
to deep exits in adjacent layers
across varied depth local EENs
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 DarkDistill: Difficulty-Aligined Reverse Knowledge 
Distillation

Our Solutions
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