

FedMetro:

Efficient Metro Passenger Flow Prediction via Federated Graph Learning

<u>Tianlong Zhang</u>, Xiaoxi He, Yuxiang Wang, Yi Xu, Rendi Wu, Zhifei Wang, Yongxin Tong

Beihang University
University of Macau
China Academy of Railway Sciences

Outline

Background

• Problem Definition

Our Solutions

- Metro systems are the main part of urban mobility
- Metro passenger flow prediction is vital for transportation management

Beijing, China

Length: 879 km

Daily ridership: 99 million

Seoul, South Korea

Length: 385 km

Daily ridership: 90 million

Tokyo, Japan

Length: 304 km

Daily ridership: 94 million

□ Practical application is hindered by **data silos** within distributed AFC systems

Data privacy constraints Personal Information Protection Regulation Law

AFC data silos

Beijing Metro: 29 Lines

The AFC databases of each metro line are **autonomous**

□ Federated graph learning enables privacy-preserving STGNN training

Unique challenges of crossline metro passenger flow prediction

- Time-evolving Spatial Correlations
- Heterogeneous Temporal Correlations
- Communication Bottlenecks

Heterogeneous temporal correlations

• Problem Definition

Our Solutions

Problem Definition

- Federated Metro Passenger Flow Prediction
 - > Signal Graph: Naturally partitioned across the metro lines

$$\boldsymbol{X}^{1:T} = \begin{bmatrix} \boldsymbol{X}_1^1 & \cdots & \boldsymbol{X}_1^T \\ \vdots & \ddots & \vdots \\ \boldsymbol{X}_M^1 & \cdots & \boldsymbol{X}_M^T \end{bmatrix}$$

> Problem Definition:

Given a current prediction timestep $t \in \{\tau - T_{in} + 1, ..., \tau\}$, we aim to learn a predictive function $F(\cdot)$ that maps a sequence of T_{in} historical observations to the next future observations:

$$\hat{X}^{(\tau+1):(\tau+T_{out})} \leftarrow \mathcal{F}(X^{(\tau-T_{in}+1):\tau})$$

Outline

Background

• Problem Definition

Our Solutions

Our Solutions

Dynamic Embedding and Mask Generation

Historical Pattern Mining

Dynamic Embedding Generation

Dynamic Mask Generation

Our Solutions

□ Global Spatial Correlations Learning

Our Solutions

□ Federated Training and Inference

• Problem Definition

Our Solutions

Datasets

	BJMetro	SHMetro	HZMetro Hangzhou, China				
City	Beijing, China	Shanghai, China					
Lines	15	14	3				
Stations	276	288	80				
Edges	906	958	248				
Period	2016/02/29-2016/04/02	2016/07/01-2016/09/30	2019/01/01-2019/01/25				

Baselines

Local GCN-based methods

- Graph WaveNet
- PVCGN
- STDGRL

Federated graph learning-based methods

- MFVSTGNN
- FedGTP

□ Performance Comparison with Baselines

Method	BJMetro				SHMetro					HZMetro								
Welliou	Inflow		Outflow		Inflow		Outflow		Inflow			Outflow						
	MAE	RMSE	MAPE	MAE	RMSE	MAPE	MAE	RMSE	MAPE	MAE	RMSE	MAPE	MAE	RMSE	MAPE	MAE	RMSE	MAPE
Graph-WaveNet	46.73	89.35	41.58%	45.16	82.61	59.93%	34.02	84.90	51.79%	33.07	86.03	49.38%	33.79	70.34	37.85%	31.66	68.15	44.51%
PVCGN	55.16	120.97	29.50%	56.87	137.75	29.36%	30.44	67.88	38.68%	30.02	77.32	34.61%	33.10	65.29	36.17%	30.23	65.66	29.41%
STDGRL	37.98	75.89	28.22%	39.34	73.17	27.66%	30.10	62.43	25.44%	30.88	75.88	28.30%	31.76	57.92	22.54%	33.33	71.40	25.21%
MFVSTGNN	39.04	82.77	36.54%	38.60	104.49	74.17%	28.55	60.47	29.66%	29.19	80.93	42.79%	28.22	47.44	40.50%	29.34	60.39	40.59%
FedGTP	31.87	62.11	25.38%	36.31	83.55	27.69%	32.16	67.32	26.59%	31.98	74.15	28.77%	28.02	49.80	20.41%	28.41	56.39	24.51%
FedMetro (Ours)	29.70	58.84	21.73%	30.11	65.59	23.15%	27.97	56.15	23.75%	29.13	68.56	26.82%	26.21	46.53	19.46%	27.36	54.42	22.67%
Improvement	6.81%	5.26%	14.38%	17.08%	10.36%	16.31%	2.03%	7.14%	6.64%	0.21%	7.54%	5.23%	6.46%	1.92%	4.65%	3.70%	3.49%	7.51%

FedMetro outperforms all baselines, with prediction accuracy improving by up to 17.08%

■ Communication Compression Study

■ Node Embedding Dimension Study

■ Ablation Study

Figure 7: Ablation study on BJMetro.

Figure 8: Ablation study on SHMetro.

Deployment

□ Visualization of Beijing metro passenger flow prediction results

Deployment

Comparison of deployment performance at Beijingzhan Station

(a) Comparison of metric value

(b) Comparison of predicted and actual value

THANK YOU

