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Beijing, China
Length: 879 km

Daily ridership: 99 million

Tokyo, Japan
Length: 304 km

Daily ridership: 94 million

Seoul, South Korea
Length: 385 km

Daily ridership: 90 million

 Metro systems are the main part of urban mobility

 Metro passenger flow prediction is vital for transportation management
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 Practical application is hindered by data silos within distributed AFC systems

Personal 
Information 
Protection 
Law

Data privacy constraints

AFC data silos

Beijing Metro: 29  Lines

The AFC databases of each 
metro line are autonomous
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 Federated graph learning enables privacy-preserving STGNN training

Federated graph learning

∆�
∆� ∆�

 ∆� 

Unique challenges of crossline
metro passenger flow prediction

 Time-evolving Spatial Correlations

Heterogeneous Temporal Correlations

Communication Bottlenecks 

Heterogeneous temporal correlationsTime-evolving spatial correlations
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 Federated Metro Passenger Flow Prediction
 Signal Graph: Naturally partitioned across the metro lines

 Problem Definition: 

Given a current prediction timestep t ∈ {τ- ���+1, ..., τ}, we aim to learn a 
predictive function F(·) that maps a sequence of  ��� historical observations 
to the next future observations:
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 Dynamic Embedding and Mask Generation
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Historical Pattern Mining

Dynamic Embedding Generation

Dynamic Mask Generation
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 Global Spatial Correlations Learning
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 Spatial Correlation Modeling

Global Spatial Correlation Aggregation
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 Federated Training and Inference

Hard Concrete Distribution
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 Datasets

 Baselines
Federated graph learning-based methods 

• MFVSTGNN

• FedGTP

Local GCN-based methods

• Graph WaveNet

• PVCGN

• STDGRL
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 Performance Comparison with Baselines

FedMetro outperforms all baselines, with 
prediction accuracy improving by up to 17.08%
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 Communication Compression Study

77.99%
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 Node Embedding Dimension Study
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 Ablation Study
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 Visualization of Beijing metro passenger flow prediction results

Deployment
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 Comparison of deployment performance at Beijingzhan Station

Deployment
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