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Abstract—The last decade has witnessed the emergence and
popularity of event-based social networks (EBSNs), which extend
online social networks to the physical world. Fundamental on
EBSN platforms is to appropriately assign EBSN users to
events they are interested to attend, known as event-participant
arrangement. Previous event-participant arrangement studies
either fail to avoid conflicts among events or ignore the social
interactions among participants. In this work, we propose a new
event-participant arrangement problem called Interaction-aware
Global Event-Participant Arrangement (IGEPA). It globally
optimizes arrangements between events and participants to avoid
conflicts in events, and not only accounts for user interests, but
also encourages socially active participants to join. To solve the
IGEPA problem, we design an approximation algorithm which
has an approximation ratio of at least 1

4
. Experimental results

validate the effectiveness of our solution.

I. INTRODUCTION

The event-based social network (EBSN) is a type of social

networks experiencing growing popularity. EBSN platforms

such as Meetup [1] allow users to organize events ranging

from trekking to public speaking. A user can create an event

specifying when and where the event will be along with other

details. Once an event is published, users can choose whether

to attend it or not.

A core functionality of EBSN platforms is event-participant

arrangement, which assigns EBSN users to the posted events

that they are interested to attend. Practical event-participant

arrangement faces two challenges. (i) How to arrange events
and participants to avoid conflicts among events while ac-
counting for the interest of users? User interest in the events

is the primary concern of user satisfaction in event-participant

arrangement. Yet a user may be interested in multiple events

which conflict with each other (e.g., overlap in time) and can

only join one of them. (ii) How to arrange active participants
into events to improve the social engagement of events?
Interactions with other participants during the event is also

crucial to the success of the event. Socially active participants

tend to promise a lively and enjoyable event.

Previous event-participant arrangement research either ig-

nores conflicts among events [2], [3] or overlooks the potential

social interactions among participants [4], [5], [6]. Further-

more, most of the existing literatures make arrangements with-

out explicitly accounting for the intention of EBSN users [2],

[3], [4], [5], [7], [8]. That is, they assume all the users are

willing to attend recommended events.

To overcome the above drawbacks, we propose a new

arrangement problem called Interaction-aware Global Event-

Participant Arrangement (IGEPA). It makes arrangements by

considering not only the user interests in events but also the

potential interactions of participants (indicated by the degree

of a user in a social network [9], [10]) such that (i) users’

interests are satisfied; (ii) participants tend to be socially

active; and (iii) conflicts among events are avoided. We study

the IGEPA problem in the bidding setting to explicitly account

for users’ intention to attend the events. Specifically, users

bid for events and let the platform decide whether they will

be admitted. Hence unlike previous studies [2], [3], [4], [5],

[7], a user will not be assigned any event that he/she does

not want to actually attend. To the best of our knowledge,

this is the first work that considers conflicts among events

and social interactions among participants in event-participant

arrangement in a bidding setting.

We prove that the IGEPA problem is NP-hard and develop

an approximation algorithm, LP-packing, to solve the IGEPA

problem. The algorithm achieves a constant approximation

ratio of at least 1
4 .

We evaluate the proposed algorithm on synthetic datasets as

well as real data collected from a real-world EBSN platform.

Evaluations show that LP-packing outperforms other baseline

algorithms in terms of effectiveness.

II. PROBLEM STATEMENT

Problem Formulation. We formulate the IGEPA problem

based on the following definitions.

Definition 1 (Event): An event v is associated with a

capacity cv , i.e., the maximum number of attendees v can

accommodate, an attribute vector lv and a set Nv of users

who bid for it.

Definition 2 (User): A user u is associated with a capacity

cu, i.e., the maximum number of events u can attend, an

attribute vector lu and an event set Nu that u bids for.

The attribute vector of an event contains attributes to deter-

mine whether two events conflict, e.g., timestamp and location

of the event. The attribute vectors of events and users also
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include attributes to calculate the interest of users in events,

e.g., categories.

Definition 3 (Conflict): The conflict function σ(lv, lv′) ∈
{0, 1} of events v and v′ indicates whether they conflict with

each other. If so, σ(lv, lv′) = 1, otherwise σ(lv, lv′) = 0.
Definition 4 (Event-Participant Arrangement): Given a set

of events V and a set of users U , an event-participant arrange-

ment is a collection of event-user pairs M ⊆ V × U . Given

a conflict function σ, an arrangement M is feasible iff M
satisfies the following constraints.

• Bid Constraint: No user is assigned to events that he/she

did not bid for, i.e., {v | (v, u) ∈ M} ⊆ Nu for all

u ∈ U .

• Capacity Constraint: |{u | (v, u) ∈ M}| ≤ cv for all

v ∈ V and |{v | (v, u) ∈M}| ≤ cu for all u ∈ U .

• Conflict Constraint: No two conflicting events are as-

signed to any user. In other words, there does not exists

two matches f = (v, u) and f ′ = (v′, u) such that

f, f ′ ∈M and σ(lv, lv′) = 1.

We aim to optimize the utility of a feasible arrangement

determined by: (i) the interest of users in events they are

assigned to and (ii) the total degree of potential interaction

of participants in each event, which are defined as follows.

Definition 5 (Interest): A user u’s interest when assigned to

the event v is measured by a function SI(lv, lu) ∈ [0, 1].
Definition 6 (Degree of Potential Interaction): Given a social

network G = (U,E) where an edge (u, u′) represents a social

tie, the degree of potential interaction of a user u is calculated

as D(G, u) = |{u′|(u,u′)∈E}|
|U |−1 (|U | > 1).

Definition 7 (Utility of Arrangement): Given a feasible

arrangement M, an interest function SI and a social network

G = (U,E), the utility of the arrangement M is:

Utility(M) = β
∑

(v,u)∈M
SI(lv, lu)+(1−β)

∑

(v,u)∈M
D(G, u)

where β ∈ [0, 1] is a parameter to balance the importance of

the interest and the degree of potential interaction.

Finally we define our Interaction-aware Global Event-

Participant Arrangement problem.

Definition 8 (IGEPA Problem): Given a set of events V ,

a set of users U , a conflict function σ, an interest function

SI(lv, lu), a social network G = (U,E), and a parameter β,

the goal of the IGEPA problem is to find a feasible event-

participant arrangement with the maximum utility.

Hardness Analysis. We claim the following hardness result

of the IGEPA problem.

Theorem 1: The IGEPA problem is NP-hard.

Proof: When β = 1, the IGEPA problem is equivalent

to the GEACC problem [4] which is NP-hard. Hence we can

reduce the GEACC problem to the special case of the IGEPA

problem. Thus the IGEPA problem is NP-hard.

III. SOLUTION

This section introduces the LP-packing algorithm to the

IGEPA problem and analyzes its approximation ratio.

Algorithm 1: LP-packing

input : U, V, σ(·, ·), SI(·, ·), G, β, α
output: A feasible arrangement M

1 {x∗u,S} ← the solution to the benchmark LP (1)-(4)

2 for u ∈ U do
3 Sample an admissible event set Su from Au with

probability αx∗u,Su
.

4 for u ∈ U do
5 for v ∈ Su do
6 if the capacity constraint of v is violated when

we assign Su′ to u′ for each u′ ∈ U then
7 Su ← Su − {v}

8 M← {(v, u) | ∀u ∈ U, ∀v ∈ Su}
9 return M

LP-packing Algorithm. Our basic idea is to use the solution

to a benchmark Linear Program (LP) to guide the event-

participant arrangement. In the benchmark LP, we construct

some admissible event sets for each user without conflicting

events and meet the capacity constraint of the user. Note that

we assume that a user will not bid for too many events, so

the number of admissible event sets will be reasonable. As

we will prove later, by assigning admissible event sets, LP-

packing yields a constant approximation ratio.

Specifically, for each user u, an admissible event set S ⊆
Nu is such a set whose cardinality is at most cu, and for

each v, v′ ∈ S, σ(lv, lv′) �= 1. Denote the collection of the

admissible event sets of u as Au. Note that, if S ∈ Au, all

nonempty subsets of S must be in Au as well. We use xu,S ,

where S ∈ Au, to indicate whether to assign the admissible

event set S to u. Let w(u, v) = β SI(lv, lu)+ (1−β)D(G, u)
and w(u, S) =

∑
v∈S w(u, v). Then we have the following

benchmark LP (1)-(4).

max
∑

u∈U

∑

S∈Au

xu,S · w(u, S) (1)

s.t.
∑

S∈Au

xu,S ≤ 1 ∀u ∈ U (2)

∑

u∈U

∑

S∈Au
v∈S

xu,S ≤ cv ∀v ∈ V (3)

0 ≤ xu,S ≤ 1 ∀u ∈ U, ∀S ∈ Au (4)

Lemma 1: The optimal value of LP (1)-(4) is a valid upper

bound for the optimal algorithm of the IGEPA problem.

Proof Sketch: When xu,S is restricted in {0, 1}, the

solution to the corresponding Integer Linear Program (ILP) is

the optimal solution to the IGEPA problem. Since the solution

to the LP (1)-(4) is an upper bound of the corresponding ILP,

we get our conclusion.

Algorithm 1 describes the LP-packing algorithm based on

benchmark LP (1)-(4). In lines 1-3, we first solve the LP (1)-

(4), and then for each user u, we sample an admissible
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TABLE I: Default settings of the synthetic datasets

Factor |V | |U | max cv max cu pcf pdeg
Setting 200 2000 50 4 0.3 0.5

event set Su from Au with probability αx∗u,Su
, where α is

a parameter. After that, the number of users assigned to an

event may exceed its capacity, so we resolve the violations of

capacity constraints of events and filter out invalid event-user

pairs in lines 4-7. We iteratively check each event v in Su for

each u. Suppose we assign Su′ to u′ for each u′ ∈ U . If doing

so will violate the capacity constraint of v, we remove v from

Su. At last, in line 8, we assign Su to each user u safely. For

a pair (v, u) where v ∈ Su and Su ∈ Au, if Su is sampled in

line 3, and v is not removed from Su in line 7, we say (v, u)
survives in our algorithm.

Approximation Analysis. The performance of Algorithm 1 is

guaranteed by the following theorem.

Theorem 2: By choosing α = 1
2 , Algorithm 1 can achieve

an approximation ratio of at least 1
4 .

Proof: Let ALG(I) denote the value of Algorithm 1 on

an input I. The approximation ratio R of Algorithm 1 can be

calculated by

R = min
I

E[ALG(I)]
OPT(I)

≥ min
I

∑
u∈U

∑
v∈V

∑
S∈Au
v∈S

αx∗u,S Pr[(v, u) survives | C]w(u, v)

∑
u∈U

∑
v∈V

∑
S∈Au
v∈S

x∗u,S · w(u, v)

(5)

where we have used Lemma 1. C denotes the event that the

admissible event set sampled for u contains v. If we can bound

Pr[(v, u) survives | C], we can bound R.

Consider a pair (v, u). Given that the sampled admissible

event set of u contains v, (v, u) survives iff the capacity
constraint of v is not violated. Note that the capacity constraint

of u and the conflict constraint have been considered when we

generate admissible event sets for u.

We use Xv to represent the number of users assigned to v
excluding u. Given that the sampled admissible event set of u
contains v, we have

E[Xv | C] ≤ α
∑

u′∈U
u′ �=u

∑

S∈Au′
v∈S

x∗u′,S ≤ αcv

where we use constraint (3) in the second inequality. Thus, by

Markov’s inequality, Pr[Xv ≥ cv | C] ≤ α. Hence,

Pr[(u, v) survives | C] = Pr[Xv ≤ cv − 1 | C] ≥ 1− α .

Based on this result and inequality (5), we have R ≥ α(1−
α). Setting α = 1

2 , α(1−α) achieves its maximum value, and

the approximation ratio of Algorithm 1 is at least 1
4 .

TABLE II: Results on the real dataset

Algorithm LP-packing Random-U Random-V GG

Utility 2129.86 2019.60 2000.92 2099.88

IV. EXPERIMENTAL STUDY

Datasets. We evaluate the performance of our solution on both

synthetic and real datasets.

• Synthetic Datasets. Table I lists the default settings of

our synthetic datasets. The capacities of events and users

are generated from uniform distributions and we vary the

maximum capacities of events and users, i.e., max cv and

max cu. Two events conflict with each other with the

probability pcf . Each pair of users are friends in the social

network with the probability of pdeg . We also vary the

number of events |V | and the number of users |U |. The

interest values of users in events are uniformly sampled.

According to our observations on real EBSNs, users tend

to bid a group of similar and often conflicting events

to ensure that they can eventually attend some (one or

multiple) of the events. So the bids of users are sampled

dependently from several sets of conflicting events.

• Real Dataset. We collected a real dataset from Meetup,

which contains 190 events and 2811 users in San Fran-

cisco. Each event is associated with a start time and a

duration. If two events overlap in time, they conflict with

each other. Only some events specify their capacities. For

those without capacity information, we set it to the total

number of users. We set each user’s capacity as twice

the number of events he/she attended. We calculate users’

interests in events based on their attributes as in [4]. Since

there is no bid information in the data, for a user u, we use

the events that he/she actually attended and another cu/2
most interesting events for u as his/her bid. We generate

the social network G in the way that if two users join at

least one common group, they have an edge in G.

Baselines. We compare LP-packing with Random-U [4],

Random-V [4] and GG (an extension of the Greedy-GEACC

algorithm [4]). We empirically set α = 1 in LP-packing.

Metrics and Implementation. We assess each algorithm in

terms of the utility (β = 0.5). All the algorithms are imple-

mented in C++ and LP is solved by the Gurobi solver [11].

Each experiment is repeated 50 times and the average results

are reported.

Results. We briefly present the results of each algorithm on

both the synthetic and real datasets.

• Performance on Synthetic Datasets. Fig. 1 shows the re-

sults on the synthetic datasets when varying the numbers

of events, the number of users, the probability of event

conflict, the probability that two users are friends, the

maximum capacity of events, and the maximum capacity

of users, respectively. LP-consistently outperforms other

algorithms in terms of utility in all the experiments. In

Fig. 1b, when there are many users (e.g., |U | = 10000),
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(a) (b)

(c) (d)

(e) (f)

Fig. 1: Experiment results on utility when varying (a) number

of events |V |; (b) number of users |U |; (c) probability of event

conflict pcf ; (d) probability that two users are friends pdeg;

(e) maximum capacity of events max cv; and (f) maximum

capacity of users max cu.

GG has similar utility as LP-packing. However, LP-

packing is notably better than GG and the other two

randomized baselines in all other experiments (e.g., up

to 53% higher utility than GG).

• Performance on the Real Dataset. Table II shows the re-

sults. LP-packing still yields the highest utility, followed

by GG, Random-U and Random-V.

V. RELATED WORK

Research on EBSNs is first proposed by [12] and there

have been extensive studies on event recommendation in

EBSNs [13], [14]. More recently, researchers have explored

to find a global optimal arrangement between events and

users in different settings [2], [4], [5], [3], [7], [15], [6],

[16]. For instance, Tong et al. [3] maximize the minimum

average utility of a single event obtained from the arrangement.

Overall, our IGEPA problem has different optimization goals

and objective from [3], [7], [15], [6], [16], so their solutions

are inapplicable to our problem. Our work is most related

to [2], [4] and [5]. In [2], the authors propose the Social Event

Organization (SEO) problem to maximize the overall social

welfare. However, they do not consider potential conflicts

among events, whereas avoiding conflicts among events is

one crucial constraint in our IGEPA problem. In [4] and [5],

the authors consider the user interests and the event con-

flicts. Nevertheless, they ignore the social interactions among

participants. Furthermore, our proposed solution has a better

performance guarantee.

VI. CONCLUSION

In this paper, we define a new event-participant arrangement

problem, called Interactive-aware Global Event-Participant Ar-

rangement (IGEPA). We prove that this problem is NP-hard

and develop an approximation algorithm, LP-packing, which

achieves an approximation ratio of at least 1
4 . Experiments on

both synthetic and real datasets validate the effectiveness of

our algorithm.
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