
1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3027200, IEEE
Transactions on Knowledge and Data Engineering

1

An Efficient Insertion Operator in Dynamic
Ridesharing Services

Yi Xu,Yongxin Tong, Member, IEEE, Yexuan Shi, Qian Tao, Ke Xu, and Wei Li

Abstract—Dynamic ridesharing refers to services that arrange one-time shared rides on short notice. It underpins various real-world
intelligent transportation applications such as car-pooling, food delivery and last-mile logistics. A core operation in dynamic ridesharing
is the “insertion operator ”. Given a worker and a feasible route which contains a sequence of origin-destination pairs from previous
requests, the insertion operator inserts a new origin-destination pair from a newly arrived request into the current route such that
certain objective is optimized. Common optimization objectives include minimizing the maximum/sum flow time of all requests and
minimizing the total travel time of the worker. Despite its frequent usage, the insertion operator has a time complexity of O(n3), where
n is the number of all requests assigned to the worker. The cubic running time of insertion fundamentally limits the efficiency of
urban-scale dynamic ridesharing based applications. In this paper, we propose a novel partition framework and a dynamic
programming based insertion with a time complexity of O(n2). We further improve the time efficiency of the insertion operator to O(n)

harnessing efficient index structures, such as fenwick tree. Evaluations on two real-world large-scale datasets show that our methods
can accelerate insertion by 1.5 to 998.1 times.

Index Terms—Insertion Operator, Dynamic Ridesharing, Dynamic Programming.

F

1 INTRODUCTION

Dynamic ridesharing refers to services that arrange one-time
shared rides on short notice. It underpins various real-world
intelligent transportation applications such as car-pooling,
food delivery and last-mile logistics. For a set of workers
and a sequence of dynamic requests, one primary function
in dynamic ridesharing is to arrange for each worker a route
to pick up and drop off requests. A worker can be a driver in
car-pooling or a courier in food delivery and logistics, while
a request can be one or multiple passengers or parcels ac-
cordingly. Dynamic ridesharing has been extensively stud-
ied in the database community [1], [2], [3], [4], [5]. It has
been proved that there is no polynomial-time algorithm
with a constant competitive ratio to solve the problem [5].
Hence many real-world ridesharing platforms, such as Didi
Chuxing and Uber, rely on heuristic algorithms [1], [2], [5].

Insertion, or an “insertion operator”, is widely adapted
in various heuristic solutions to dynamic ridesharing [1],
[2], [5], [6], [7], [8], [9] and is recognized as a core op-
erator in these solutions [10], [11], [12]. Given a worker
and a feasible route which contains a sequence of origin-
destination pairs from previous requests, insertion, a.k.a.
an insertion operator, inserts a new origin-destination pair
from a newly arrived request into the current route such
that certain objective is optimized. The objective of a generic
insertion operator is defined from the perspective of ei-
ther the requests or the worker. From the requests’ per-
spective, insertion needs to minimize the maximum/sum

• Y. Xu, Y. Tong, Y. Shi, Q. Tao, K. Xu and W. Li are with the State
Key Laboratory of Software Development Environment and Advanced
Innovation Center for Big Data and Brain Computing, School of Computer
Science and Engineering, Beihang University, PR China. E-mail: {xuy,
yxtong, skyxuan, qiantao, kexu}@buaa.edu.cn, liwei@nlsde.buaa.edu.cn.

• Yongxin Tong is the corresponding author in this paper.

waiting time/distance of all the requests. From the work-
ers’ perspective, insertion should minimize the total travel
time/distance of the worker.

Despite its importance, the generic insertion operator
remains an efficiency bottleneck for dynamic ridesharing
algorithms. The insertion that optimizes from the requests’
perspective has a time complexity of O(n3), where n is the
number of all the requests for the worker. The cubic running
time limits the efficiency of urban-scale dynamic ridesharing
based applications. Though a linear-time insertion method
that optimizes the objective from the workers’ perspective
has been proposed [5], it cannot be adapted for the op-
timization objective from the requests’ perspective as the
insertion algorithm in [5] is derived from a special recursion
relationship for the objective from the workers’ perspective.

To break the efficiency bottleneck, we propose a
partition-based framework and devise an O(n2)-time inser-
tion operator. Moreover, we harness efficient index struc-
tures, such as fenwick tree [13], and further reduce the time
complexity of a generic insertion operator to linear time.

Our main contributions can be summarized as follows.
• We systematically study the generic insertion opera-

tor for dynamic ridesharing and propose a partition-
based framework to reduce the time complexity of a
generic insertion operator to O(n2).

• Based on the partition-based framework, we further
improve the time complexity to O(n) utilizing effi-
cient index structures, such as fenwick tree.

• Experimental results show that our algorithms can
speed up the insertion operator by 1.5 to 998.1 times
on real-world urban-scale datasets.

A preliminary version of this work is in [14]. In this
paper, we make the following new contributions: (1) We
extend our partition-based framework to a new objective:
total waiting time of requests (i.e., sum flow time). (2) We

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on April 08,2021 at 09:34:15 UTC from IEEE Xplore.  Restrictions apply. 



1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3027200, IEEE
Transactions on Knowledge and Data Engineering

2

apply the segment-based optimization on the new objective.
(3) We conduct new evaluations on real-world datasets.

In the rest of this paper, we define the insertion operator
in Sec. 2 and review existing solutions in Sec. 3. For the
two objectives which have max operator, we propose a
partition-based framework in Sec. 4 and design a series of
optimization techniques to reduce the time complexity in
Sec. 5. In Sec. 6, we extend the framework and optimization
techniques to a new objective: sum flow time. Finally we
present the evaluations in Sec. 7 and conclude in Sec. 8.

2 PROBLEM STATEMENT

This section presents the generic formulation of the insertion
operator in ridesharing services.
Definition 1 (Worker). A worker is defined as w =< ow, cw >
with a current location of ow and a capacity of cw, where the
capacity is the maximum number of passengers/parcels w can take
at the same time.
Definition 2 (Request). A request is defined as r =<
or, dr, tr, er, cr >, with an origin or, a destination dr, a release
time tr, a deadline er , and a capacity cr , where cr is the number
of passengers/parcels for request r. A request r can be completed
if it is picked up after tr and delivered before er by a worker.

We denote R = {r1, r2, ..., r|R|} as the set of requests
assigned to w yet have not been completed.
Definition 3 (Route). Given a worker w and a request set
R, a route of w is defined as SR = 〈l0, l1, l2, ..., ln〉, which
is a sequence of w’s current location and all the origins and
destinations of the requests in R, i.e. l0 = ow and li ∈ {or|r ∈
R} ∪ {dr|r ∈ R} for all 1 ≤ i ≤ n. We use n to denote the
number of locations in SR except the current location of w.

A route is feasible if these constraints are satisfied:
• Order Constraint. ∀r ∈ R, or lies before dr , i.e., a

request is picked up before delivered;
• Deadline Constraint. ∀r ∈ R, the worker w com-

pletes r before its deadline er , i.e., all the assigned
requests can be completed;

• Capacity Constraint. At any time, the total capacity
of all requests that have been picked up but not
delivered does not exceed the capacity of w.

Definition 4 (Flow Time). Given a worker w, a request set R
and a feasible route SR, the flow time of each request r ∈ R is the
duration between tr and the time that r is delivered (denoted by
delv(r)), i.e. flw(r) = delv(r)− tr .
Definition 5 (Insertion Operator). Given a worker w, a feasible
route SR, and a new request r′, the insertion operator inserts or′
and dr′ into SR to obtain a new feasible route SR+ (R+ = R ∪
{r′}). Depending on the specific applications, one of the following
objective functions should be minimized.
(1) Maximum flow time of all the requests [6], [7], [15], [16],

i.e. maxr∈R+{flw(r)}.
(2) Total travel time of the worker [1], [2], [5], [9], or

equivalently, the delivery time of the last request, i.e.
maxr∈R+{delv(r)}.

(3) Sum flow time of all the requests [17], [18], i.e.∑
r∈R+{flw(r)}.

We make two remarks on the insertion operator.

• For brevity, “insertion (i, j)” is used to denote the
insertion of or′ after li and dr′ after lj .

(a) Route before insertion (b) Route before insertion
Fig. 1: An example of insertion.

TABLE 1: Information of requests.

request release time
tr

deadline
er

origin
or

destination
dr

capacity
cr

r1 0 25 (4, 4) (10, 4) 1
r2 0 37 (8, 8) (4, 0) 1
r3 0 33 (10, 2) (10, 0) 1
r′ 2 26 (4, 6) (6, 2) 1

• For convenience, we rewrite the three objective func-
tions into a unified form as

OBJ(SR+) = OP
r∈R+

{flw(r) + α · tr}, (1)

where α is either 1 or 0. Note that

OBJ(SR+) =

 maximum flow time, OP = max, α = 0
total travel time, OP = max, α = 1
sum flow time, OP =

∑
, α = 0

(2)

The following example illustrates the insertion operator.
Example 1. Suppose that on a ridesharing platform a driver
w serves three requests r1-r3. At time 2, a new request r′

arrives and we try to insert r′ into the current route SR

of w. The origins and destinations of requests are shown in
Fig. 1a, and their information is shown in Table 1. At this time
SR = 〈ow, or1 , or2 , dr1 , or3 , dr3 , dr2〉, where ow = (2, 4). We
account the travel time between locations to one decimal place.
We also assume that the capacity of the worker cw is 4 and the
capacity of all the requests is 1.

The new route SR+ should satisfy the capacity constraint
and deadline constraint, and keep the order of r1-r3’s origins
and destinations the same as in SR. A feasible route after in-
sertion is to insert or′ and dr′ after ow and dr3 respectively, as
shown in Fig. 1b. In the new route SR+ , the flow time of four
requests is flw(r1) = (2 + 2.8 + 2 + 5.7 + 4.5) − 0 = 17,
flw(r2) = (2+2.8+2+5.7+4.5+2+2+4.5+2.8)−0 = 28.3,
flw(r3) = (2 + 2.8 + 2 + 5.7 + 4.5 + 2 + 2) − 0 = 21,
flw(r′) = (2+ 2.8+ 2+5.7+ 4.5+ 2+2+4.5)− 2 = 23.5,
respectively. Thus, the maximum flow time of the route is
max{17, 28.3, 21, 23.5} = 28.3; the total travel time of the route
is 2 + 2.8 + 2 + 5.7 + 4.5 + 2 + 2 + 4.5 + 2.8 = 28.3 and the
sum flow time of the route is 17 + 28.3 + 21 + 23.5 = 89.8.

3 RELATED WORK
Ridesharing services first emerged in 1970s as a result
of the oil crisis and has received increasingly attention
due to the development of the mobile Internet, sharing
economy and spatial crowdsourcing [19], [20], [21], [22],
[23]. The first research paper dates back to the pickup and
delivery problem (a.k.a. dial-a-ride problem) proposed in
1975 [24], and has been extensively studied by the database,
data mining, transportation science and operations research
communities. For nearly 50 years, neither super-constant
approximation algorithms nor hardness results are known
for the dial-a-ride problem. Instead, insertion is widely used
by various heuristic solutions to ridesharing [1], [2], [5], [6],

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on April 08,2021 at 09:34:15 UTC from IEEE Xplore.  Restrictions apply. 



1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3027200, IEEE
Transactions on Knowledge and Data Engineering

3

TABLE 2: Time complexity for insertion in existing works.
Method and Reference Objective Time
adaptive insertion [6] max flow time O(n3)

large-scale insertion [7] max flow time O(n3)

sequential insertion [8] max flow time O(n3)
sum flow time O(n3)

regret insertion [17] sum flow time O(n3)
two-phrase insertion [18] sum flow time O(n3)

clustering insertion [9] total travel time O(n3)
tshare [1] total travel time O(n3)

kinetic [2], [3], [4] total travel time O(n2)
pruneGreedyDP [5] total travel time O(n)

our approach in this paper
max flow time

O(n)sum flow time
total travel time

Algorithm 1: Brute Force Algorithm

input : A worker w with route SR, a new request r′

output: A new route SR+

1 O∗ ←∞, SR+ ← SR;
2 for i← 0 to n do
3 for j ← i to n do
4 S ← insert or′ after li and dr′ after lj in SR;
5 if S is feasible and OBJ(S) < O∗ then
6 O∗ ← OBJ(S), SR+ ← S;

7 return SR+ ;

[7], [8], [9], [17], [18] and is regarded as a basic operator
in ridesharing [10], [11]. Table 2 lists some of the most
representative solutions to ridesharing based on insertion
under different optimization objectives.

Alg. 1 illustrates a straightforward implementation of
insertion. It enumerates all insertions and finds a route
with minimal OBJ(SR+). Enumerating (i, j) (lines 2-3) is
operatedO(n2) times, while checking constraints and calcu-
lating the objective of the new route in lines 5-6 need O(n)
time. Hence its time complexity is O(n3), where n is the
number of locations in SR. We review the usage of insertion
for ridesharing of different optimization objectives below.

Maximum flow time models the longest waiting time
of the requests before they are served. It was first used
to evaluate the inconvenience or dissatisfaction of the re-
quests (passengers) in ridesharing services. To minimize the
maximum flow time in ridesharing, Jaw et al. [8] propose
to sequentially insert requests into the current route, which
can handle a few thousands (around 3000) of requests. This
insertion procedure is widely used by follow-up papers [6],
[7], [25]. Hame et al. [6] also utilize insertion to adaptively
solve the problem. For larger-scale datasets, Krumke et
al. [7], [25] design a batch based framework where inser-
tion can be directly used. The insertion to minimize the
maximum flow time takes O(n3) time [6], [7], [8].

Sum flow time models the average waiting time of the
requests. Jaw et al. [8] first devise a cubic-time insertion
operator for this objective. This insertion method has been
adopted by many other solutions [17], [18] to minimize the
sum flow time. For instance, Diana et al. [17] propose a
new regret insertion technique, which swaps two requests
from two different routes by re-inserting each request into
the other route. Coslovichaba [18] proposes a two-phase
framework for real-time dia-a-ride.

Total travel time indicates the preference of workers [26],
i.e., a worker usually wants to serve all requests in less time.

Fig. 2: An example of detour for insertion (i, j).

To minimize the total travel time in ridesharing, Iochim et
al. [9] cluster the nearest requests first and then construct the
route for each worker by repeated insertion. They use the
insertion procedure of [8] in O(n3) time and insert requests
into different routes parallel. Zheng et al. [1] design a general
framework that repeatedly executes an O(n3) insertion.
Huang et al. [2] combines insertion and kinetic tree such
that the time complexity of insertion is reduced to O(n2).
Kinetic tree is widely used to minimize the total travel time
of ridesharing [3], [4]. Tong et al. [5] further accelerate the
insertion operator to minimize the total travel time to linear
time, which has been applied in [27].

In summary, insertion is the cornerstone of many ex-
isting solutions to ridesharing. Although insertion with
linear time has been proposed for one special optimization
objective, the generic insertion operator still takes O(n3)
time. With the increasing scale and real-time requirement of
ridesharing services, the efficiency of the insertion operator
has become a bottleneck. In this work, we accelerate the
generic insertion operator to linear time.

4 A PARTITION-BASED FRAMEWORK

In this section, we introduce a partition-based framework
that leads to an O(n2) insertion operator. The key enabler
is to check constraints and calculate the objective in O(1)
time using the partitiobn framework rather than in O(n)
time as needed in the straightforward implementation of
insertion in Alg. 1. We first explain the basic idea of partition
in Sec. 4.1, based on which we devise an insertion operator
of O(n2) time complexity using dynamic programming in
Sec. 4.2. This section focuses on maximum flow time and
total travel time since these two objectives are the cases
where OP = max (see Eq.(2)). We discuss extensions to sum
flow time in Sec. 6.1.

4.1 Rationale of Partition
The key observation of the partition-based framework is
that we can partition the requests (i.e., R+, including the
current requests R and the new request r′) into four disjoint
sets and handle their constraints and objective independently.

The partition of requests is based on the concept of
detour. A detour represents the increased travel time after
inserting a new location compared with the travel time of
the original route. Formally, the detour det(k, p) of inserting
origin/destination p between k-th location and (k + 1)-th
location of route SR can be calculated as below:

det(k, p) = dis(lk, p) + dis(p, lk+1)− dis(lk, lk+1).

As shown in Fig. 2, given insertion (i,j), we focus on two
detours det(i, or′) and det(j, dr′), i.e., the detour of inserting
or′ (the increased travel time from the i-th location and (i+
1)-th location) and the detour of inserting dr′ (the increased
travel time from the j-th location and (j + 1)-th location).

According to the difference in the impact of detours due
to insertion (i, j) of a new request r′, we can now partition
all the requests into four disjoint sets (see Fig. 3).

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on April 08,2021 at 09:34:15 UTC from IEEE Xplore.  Restrictions apply. 



1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3027200, IEEE
Transactions on Knowledge and Data Engineering

4

Fig. 3: An example of request partition (i < j).

Algorithm 2: Framework

input : A worker w with route SR, a new request r′

output: A new route SR+

1 for i← 0 to n do
2 for j ← i to n do
3 Check the capacity and deadline constraints;
4 Compute mf1,mf3,mf2,mf4 of insertion

(i, j);
5 OBJ← max{mf1,mf2,mf3,mf4};
6 Update (i∗, j∗) with (i, j) according to OBJ;

(1) R1 contains the requests whose destinations are
before the i-th location (i included). All the requests in this
set are not influenced by the detour of inserting or′ and dr′ .

(2) R2 contains the requests whose destinations are
between the i-th location (i excluded) and the j-th location
(j included). All the requests in this set are influenced by
detour of inserting or′ .

(3) R3 contains the requests whose destinations are after
the j-th location (j excluded). All the requests in this set are
influenced by detours of inserting or′ and dr′ .

(4) R4 only contains r′, which causes the detour.
With the above partition, Eq.(1) can be rewritten as

OBJ(SR+) = max{mf1,mf2,mf3,mf4}, (3)

where mf1 = max
r∈R1

{flw(r) + αtr},mf2 = max
r∈R2

{flw(r) + αtr},

mf3 = max
r∈R3

{flw(r) + αtr},mf4 = max
r∈R4

{flw(r) + αtr}.

Based on Eq.(3), we can also reformulate the framework
of insertion as in Alg. 2. Specifically, for each pair of (i, j) for
insertion (lines 1-2), we first check in line 3 if the capacity
and deadline constraints are violated (Sec. 4.2.1). If not, we
calculate in line 4 the values of mf1,mf2,mf3,mf4. We
finally calculate the objective in line 5 and update (i∗, j∗)
which represents the best insertion locations in line 6.
4.2 Naive Dynamic Programming Based Insertion
This subsection introduces an O(n2) insertion operator
based on the partition framework in Sec. 4.1. The key insight
is that the partition allows pre-calculation of some variables
such that checking constraints and calculating the objectives
can be performed in O(1) time rather than O(n) as in Alg. 1.
Table 3 summarizes the major notations.
4.2.1 Checking Capacity and Deadline Constraints
Recall that capacity constraint means that at any time the
number of passengers/parcels carried by a worker cannot
exceed his capacity and deadline constraint means all the
requests picked by the worker should be delivered before
the requests’ deadlines. We next show how to check these
two constraints in O(1) with variables pck(·) and slk(·).

Checking Capacity Constraint. Given SR, pck(k) is de-
fined as the number of requests picked but not delivered
after w arrives at lk. For all 0 ≤ k ≤ n, pck(k) can be pre-
calculated in O(n). With pck(k) we can check the capacity
constraint in O(1) through Lemma 1.

TABLE 3: Summary of major notations.
Notation Description
dis(p1, p2) travel time between p1 and p2
det(k, p) the detour time of inserting location p after lk
arr(k) arrival time of lk

mobj(i, j)
maximum flw(r) + αtr for requests whose

destinations are between li and lj in the original route
slk(k) maximum tolerable time for detour after lk
pck(k) number of requests picked but not delivered after lk

Lemma 1. The capacity constraint will not be violated iff
pck(i) ≤ cw − cr′ and pck(j) ≤ cw − cr′ .

The proof of Lemma 1 can be found in [14].
Checking Deadline Constraint. Define slk(k) as the

maximum tolerable time for detour after lk to satisfy the
deadline constraint (i.e., slack time). Thus,

slk(k) = min{slk(k + 1), ddl(k + 1)− arr(k + 1)}, (4)

where arr(k) represents the arrival time to reach lk in the
original route and ddl(k) represents the latest time to arrive
at lk without violating the deadline constraint. Specifically
ddl(k) can be calculated as

ddl(k) =

{
er − dis(or, dr), lk is an origin
er, lk is a destination.

(5)

The value of slk(k) for all 0 ≤ k ≤ n can be pre-
calculated in O(n) before enumerating all pairs (i, j) for
insertion. With slk(k) we can check the deadline constraint
in O(1). Specifically, three cases should be checked.

(1) Check whether any deadline constraint of all the
existing requests is violated by inserting or′ after li, i.e.,
whether det(i, or′) ≤ slk(i);

(2) Check whether any deadline constraint of all the
existing requests is violated by inserting dr′ after lj ,
i.e., whether dis(li, or′) + dis(or′ , dr′) + dis(dr′ , li+1) −
dis(li, li+1) ≤ slk(i) when i = j or det(i, or′)+det(j, dr′) ≤
slk(j) when i < j;

(3) Check whether the deadline constraint of the new
request is violated, i.e., whether arr(i) + dis(li, or′) +
dis(or′ , dr′) ≤ er′ when i = j or arr(i) + det(i, or′) +
dis(lj , dr∗) ≤ er′ when i < j.

4.2.2 Calculating Objectives
We calculate mf1,mf2,mf3 and mf4 in O(1) time during
the enumeration of i and j as follows. Denote mobj(i, j)
as the maximum flw(r) + α · tr for any request whose
destination is between the i-th location and the j-th location.
Thus, it takes O(n2) time to pre-calculate mobj(i, j) by
enumerating i from 0 to n and j from i to n. Since the pre-
calculation can be done in O(n2) time before enumerating
all pairs (i, j) for insertion, it only takes O(1) time to access
mobj(i, j) in the enumerations of insertion (i, j). We next
show how to calculate mf1,mf2,mf3 and mf4 in O(1) time
in two cases: (i) i < j and (ii) i = j.

(i) When i < j, mf1,mf2,mf3 and mf4 can be calcu-
lated with the help of mobj(i, j) in O(1) time as follows.

(1) Calculating mf1: As shown in Fig. 3, all the requests
in R1 (whose destination is before the i-th location) are not
influenced by detour. Thus, mf1 can be calculated as

mf1 = mobj(0, i). (6)

(2) Calculating mf2: As shown in Fig. 3, all the requests
in R2 (whose destination is between the i-th and the j-th
locations) are only influenced by the detour of inserting

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on April 08,2021 at 09:34:15 UTC from IEEE Xplore.  Restrictions apply. 



1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3027200, IEEE
Transactions on Knowledge and Data Engineering

5

Fig. 4: An example of requests partition (i = j).
TABLE 4: Values of mobj(·, ·).

i
j 0 1 2 3 4 5 6

0 0 0 0 14.2 14.2 18.2 24.2
1 - 0 0 14.2 14.2 18.2 24.2
2 - - 0 14.2 14.2 18.2 24.2
3 - - - 14.2 14.2 18.2 24.2
4 - - - - 0 18.2 24.2
5 - - - - - 18.2 24.2
6 - - - - - - 24.2

i. Specifically, flw(r) + αtr of each request in R2 would
increase by det(i, or′). Thus mf2 can be calculated as

mf2 = det(i, or′) +mobj(i+ 1, j). (7)

(3) Calculating mf3: As shown in Fig. 3, all the requests
in R3 (whose destination is after the j-th location) are
influenced by the detours of inserting i and j. Specifically,
flw(r) + αtr of each request in R3 would increase by
det(i, or′) + det(j, dr′). Thus mf3 can be calculated as

mf3 = det(i, or′) + det(j, dr′) +mobj(j + 1, n). (8)

(4) Calculating mf4: As shown in Fig. 3, R4 only
contains the new request r′. Intuitively, it would take
arr(j) + det(i, or′) time to reach the j-th location, due to
detour of inserting i. It will take another dis(lj , dr′) time to
reach the destination of r′. Thus, we have
mf4 = arr(j) + det(i, or′) + dis(lj , dr′) + (α− 1)tr′ . (9)

(ii) When i = j, we calculate mf1,mf2,mf3 and mf4
in O(1) time. The case when i = j differs from the case
when i < j in two folds: 1) R2 contains no requests when
i = j; and 2) detour is calculated differently. Fig. 4 shows an
example of the case when i = j. Accordingly, when i = j,
mf1,mf2,mf3 and mf4 are calculated as follows.

(1) Calculating mf1: mf1 is still mobj(0, i) since the
requests in R1 are not influenced by detour.

(2) Calculating mf2: mf2 is 0 because R2 contains no
requests when i = j.

(3) Calculating mf3: Denote det(i, r′) as the detour
when i = j. Then the det(i, r′) can be calculated as

dis(li, or′) + dis(or′ , dr′) + dis(dr′ , li+1)− dis(li, li+1).

Thus mf3 can be calculated as det(i, r′) +mobj(i+ 1, n).
(4) Calculating mf4: Formf4, it takes arr(i)+dis(li, or′)

time to reach or′ and then another dis(or′ , dr′) time to reach
dr′ . Thus mf4 can be calculated as
mf4 = arr(i) + dis(li, or′) + dis(or′ , dr′) + (α− 1)tr′ . (10)

Example 2. Back to the settings in Example 1. Suppose that we
want to calculate the maximum flow time of insertion (1, 5). We
pre-calculate the values ofmobj(·, ·) as Table 4. Take i = 1, j = 3
as an example. l3 is the destination of r1, and flw(r1) = 14.2.
We have mobj(1, 3) = max{mobj(1, 2), 14.2} = 14.2. In the
same way, we calculate mobj(1, 4), mobj(1, 5) and mobj(1, 6).

Then we calculate mf1, mf2, mf3 and mf4 as follows.
First the maximum flow time of requests in R1 is mf1 =
mobj(0, 1) = 0. Since det(1, or′) = 0.8, the maximum flow
time of requests in R2 is mf2 = det(1, or′) +mobj(2, 5) = 19
(Eq.(7)). As for the requests in R3, we have det(1, or′) = 0.8

TABLE 5: Values of OBJ(SR+).

i
j 0 1 2 3 4 5 6

0 32.3 30.4 33.3 33.5 33.5 28.3 27.8(×)
1 - 31.3 31.3 31.5 31.5 26.3 25.8(×)
2 - - 33.2 37 37(×) 31.8(×) 31.3(×)
3 - - - 37 42.2(×) 37(×) 36.5(×)
4 - - - - 38.4(×) 39.2(×) 38.7(×)
5 - - - - - 34(×) 33.5(×)
6 - - - - - - 32.7(×)

Algorithm 3: Naive DP Algorithm

1 SR+ ← SR, O
∗ ←∞, i∗ ← none, j∗ ← none;

2 Pre-calculate pck(·), slk(·),mobj(·, ·);
3 for i← 0 to n do
4 for j ← i to n do
5 if capacity constraint is violated then break ;
6 if deadline constraint is violated then continue ;
7 mf1,mf2,mf3,mf4 ← obtain by Eq.(6)-(10);
8 O ← max{mf1,mf2,mf3,mf4};
9 if O < O∗ then

10 O∗ ← O, i∗ ← i, j∗ ← j;

and det(5, dr′) = 1.3. Thus, mf3 = det(1, or′)+ det(5, dr′)+
mobj(6, 6) = 26.3. To obtain the maximum flow time of requests
in R4, we first get arr(5) = 18.2, det(1, or′) = 0.8 and
dis(l5, dr′) = 4.5. Substituting these results into Eq.(9), we
have that the maximum flow time of requests in R4 is mf4 =
arr(5)+det(1, or′)+dis(l5, dr′) = 23.5. Finally the maximum
flow time for insertion (1, 5) is max{0, 19, 26.3, 23.5} = 26.3.

4.2.3 Algorithm Details
Alg. 3 illustrates the naive DP based insertion algorithm.
In line 2, we pre-calculate pck(·), slk(·),mobj(·, ·) as in
Sec. 4.2.1 and Sec. 4.2.2. While enumerating the pairs (i, j)
for insertion in lines 3-4, we first check the capacity con-
straint in line 5. If it is violated, we directly break the
enumeration of j by Lemma 1. Then we check the dead-
line constraint in line 6. If all constraints are satisfied, we
calculate mf1,mf2,mf3,mf4 according to Eq.(6)-Eq.(10) in
line 7, and calculate the objective according to Eq.(3) in line
8. In lines 9-10, we update O∗, i∗, and j∗ respectively.
Example 3. Back to Example 1. Table 5 summarizes the maxi-
mum flow time of each insertion (i, j). Symbol “×” means that
the insertion violates the constraints. The values of mobj(·, ·)
have been pre-calculated in Table 4. Take i = 1 as an example. For
each j from 1 to 6, we first check the capacity and deadline con-
straints. The insertions (1, 1) to (1, 5) satisfy the constraints. We
further calculate the maximum flow time as 31.3, 31.3, 31.5, 31.5
and 26.3 respectively. So we know insertion (1, 5) leads to the
minimum maximum flow time of requests.

Complexity Analysis. In line 2, variable pck(·), slk(·) can
be pre-calculated in O(n) time, but variable mobj(·, ·) needs
O(n2) time and O(n2) space to be calculated. Checking
constraints and obtaining OBJ(SR+) while enumerating i
and j can be realized in O(1) time. Hence the total time of
lines 3-10 is O(n2). Thus, the naive DP based insertion has a
time complexity of O(n2) and a space complexity of O(n2).

5 A SEGMENT-BASED DP ALGORITHM
In this section, we push the limit of the time complexity
of the generic insertion operator from O(n2) to O(n) time,

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on April 08,2021 at 09:34:15 UTC from IEEE Xplore.  Restrictions apply. 



1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3027200, IEEE
Transactions on Knowledge and Data Engineering

6

which is the lower bound of the time complexity, i.e., the
time of scanning input. We first introduce a new equiva-
lent expression of objective with only O(n) time of pre-
calculation in Sec. 5.1, and then present key observations
on the capacity and the deadline constraints in Sec. 5.2.
Accordingly, we introduce the basic idea of the segment-
based DP algorithm in Sec. 5.3, and describe the detailed
algorithm in Sec. 5.4. Its extension to minimize sum flow
time will be discussed in Sec. 6.2.

5.1 New Equivalent Expression of Objective
Basic Idea: In Eq.(3), we calculate the objective OBJ(SR+)
as max{mf1,mf2,mf3,mf4} when enumerating i and j.
According to associative law, we can combine the ob-
jective in the following orders: (i) First combine mf2
and mf3 as com1, i.e., com1 = max{mf2,mf3}; (ii)
Then combine mf1 (denoted by com2), i.e., com2 =
max{mf1,mf2,mf3} = max{mf1, com1}; (iii) Finally com-
bine mf4, i.e., OBJ(SR+) = max{com2,mf4}.

The naive DP insertion needs to pre-calculate a two
dimensional array mobj(i, j), which takes O(n2) time. By
following the above order, we only need a column (j = n)
of this array, i.e., mobj(i, n). We first explain the calculation
based on this new expression when i < j as follows.

(1) Calculating com1: We first separate the com-
mon term det(i, or′) from max{mf2,mf3} as det(i, or′) +
max{mobj(i+ 1, j), det(j, dr′) +mobj(j + 1, n)}. Then we
focus on mobj(i+1, j) in the second term because it cannot
be calculated from the one dimentional array mobj(·, n).
The trick is to combine an additional term mobj(j + 1, n)
into the second term as max{mobj(i + 1, j),mobj(j +
1, n), det(j, dr′)+mobj(j+1, n)}. Combiningmobj(j+1, n)
causes no change in the maximum as mobj(j + 1, n) is al-
ways no larger than det(j, dr′)+mobj(j+1, n). Further note
that the maximum betweenmobj(i+1, j) andmobj(j+1, n)
is mobj(i+ 1, n). Thus com1 can be calculated as
det(i, or′) + max{mobj(i+ 1, n), det(j, dr′) +mobj(j + 1, n)}.

(11)
(2) Calculating com2: Since mf1 = mobj(0, i), we have

com2 = max{mobj(0, i), com1}. Based on Eq.(11), mobj(i+
1, n) is no larger than com1. Thus we can safely combine
mobj(i+ 1, n) into com2 as:

com2 = max{mobj(0, i),mobj(i+ 1, n), com1}
= max{mobj(0, n), com1}. (12)

(3) Calculating Objectives: To calculate OBJ(SR+) =
max{com2,mf4} = max{mobj(0, n), com1,mf4}, we first
calculate the last two terms and combine with mobj(0, n).
Since both com1 and mf4 contain det(i, or′), we extract it
from {com1,mf4} as follows.
det(i, or′) + max{mobj(i+ 1, n), det(j, dr′) +mobj(j + 1, n),

arr(j) + dis(lj , dr′) + (α− 1)tr′}

Denote par(j) as the terms only related to j as follows.

par(j) = max{det(j, dr′) +mobj(j + 1, n), (13)
arr(j) + dis(lj , dr′) + (α− 1)tr′}.

Finally, we can rewrite OBJ(SR+) in Eq.(3) as:

max
{
mobj(0, n), det(i, or′) + max{mobj(i+ 1, n), par(j)}

}
.

(14)
When i = j, we use a similar way to reduce the time

of pre-calculation. Specifically, since mf2 = 0, we can safely
combine mobj(i+ 1, n) into the objective as

max{mobj(0, i),mobj(i+ 1, n), det(i, r′) +mobj(i+ 1, n)}
= max{mobj(0, n), det(i, r′) +mobj(i+ 1, n)}.

When we enumerate i, det(i, or′) is constant. It takes O(1)
time to calculate the objective and check constraints when
i = j. Thus it takes O(n) time in total to calculate the
objective and check the constraints when i = j.

When i < j, even if i is fixed (enumerated), we still need
to check each j (> i) in the naive DP insertion. As next, we
introduce observations on the constraints, which help filter
j that satisfies the capacity and the deadline constraints.

5.2 Observations on Constraints

Observation on capacity constraint. In the naive DP in-
sertion (Alg. 3), we can safely break the inner loop of j
according to Lemma 1. For each i, let brk(i) be the value of
j when it breaks the inner loop. It indicates that the capacity
constraint is not violated for any j larger than i but not
exceeds the breaking point brk(i), i.e., i < j < brk(i). After
comparing the inner loop for adjacent i, i.e., j ∈ (i, brk(i)),
we have the following observation.
Lemma 2. (1) If the capacity constraint is violated when in-
serting or′ after the i-th location, i.e. pck(i) > cw − cr′ , range
(i, brk(i)) is empty. (2) Otherwise, the value of brk(i) is the same
as brk(i+ 1).
Observation on deadline constraint. According to the
deadline constraints in Sec. 4.2.1, we have the following
observation, as illustrated in Lemma 3.
Lemma 3. Let thr(j) be a threshold of j,
thr(j) = min{slk(j)− det(j, dr′), er′ − arr(j)− dis(lj , dr′)}.

Assume the deadline constraint of existing requests is not violated
by inserting or after the i-th location. Insertion (i, j) would
satisfy the deadline constraint, iff the threshold of j is no less
than detour of inserting i, i.e. thr(j) ≥ det(i, or′).

The proof of Lemma 2-3 can be found in [14].
In summary, the first observation (from the capacity con-

straint) determines the range of j, i.e., i < j < brk(i). The
second observation (from the deadline constraint) shows
that only some of such j would satisfy both constraints, i.e.,
those j whose threshold thr(j) are no less than det(i, or′). In
the next subsections, as we enumerate i, we aim to calculate
the minimum objective from such j more efficiently, i.e.,

min
i<j<brk(i), thr(j)≥det(i,or′ )

OBJ(SR+). (15)

5.3 Segment-based Optimization
Basic Idea: If we enumerate i, by utilizing data structure like
segment tree [28], we can directly query the optimal j and
the corresponding objective (i.e., Eq.(15)). Next we explain in
detail how to utilize the segment tree to accelerate constraint
checking and objective calculation.

To efficiently filter those j satisfying the deadline con-
straint (i.e., thr(j) ≥ det(i, or′)), we can construct a segment
tree according to thr(j). As i is fixed, then det(i, or′) is
constant. By querying the segment [det(i, or′),∞), we filter
those j satisfying the deadline constraints.

To efficiently calculate the minimum objective (i.e.,
Eq.(15)), we store par(j) (only related to j) as the value of
each leaf node in the tree. Thus, we can efficiently query
the minimum value of par(j) among previously filtered

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on April 08,2021 at 09:34:15 UTC from IEEE Xplore.  Restrictions apply. 



1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3027200, IEEE
Transactions on Knowledge and Data Engineering

7

Algorithm 4: Segment-based DP Algorithm

1 SR+ ← SR, O
∗ ←∞, i∗ ← none, j∗ ← none;

2 Pre-calculate pck(·), slk(·), thr(·),mobj(·, n);
3 Construct a segment tree ST;
4 for i← 0 to n do
5 Handle the case when i = j;

6 for i← n− 1 to 0 do
7 Update leaf thr(i+ 1) with par(i+ 1) in ST;
8 if pck(i+ 1) > cw − cr′ then
9 Invalidate ST;

10 if pck(i) ≤ cw − cr′ and det(i, or′) ≤ slk(i) then
11 Query the minimum par(j) from segment

[det(i, or′),∞) in ST;
12 O ← calculate objective according to Eq.(16);
13 if O < O∗ then
14 O∗ ← O, i∗ ← i, j∗ ← j;

positions. As a result, we can efficiently calculate Eq.(15) for
a fixed i. Specifically, the terms in Eq.(14) like mobj(0, n),
det(i, or′), mobj(i + 1, n) are constant for a fixed i. Substi-
tuting Eq.(14) into Eq.(15), we have:

max
{
mobj(0, n), det(i, or′) +mobj(i+ 1, n),

det(i, or′) + min
i<j<brk(i),thr(j)≥det(i,or′ )

{par(j)}
}
. (16)

To maintain the positions of j from (i, brk(i)) which
satisfy the capacity constraint, we either invalidate the
segment tree or update the segment tree when enumerating
i. Specifically, if inserting or′ after i-th location violates the
capacity constraint (i.e., Lemma 2 (1)), we mark the tree as
invalid; otherwise (i.e., Lemma 2 (2)), we update the tree.
This way, both operations are efficient on the segment tree.

In summary, by utilizing segment tree and enumerating
i, we can calculate the optimal j and the corresponding
objective (Eq.(16)) efficiently.

5.4 Algorithm Details
Alg. 4 illustrates the segment-based DP insertion algorithm.
In line 2, we pre-calculate pck(·), slk(·), thr(·), mobj(·, n) as
in Sec. 4.2. In line 3, we construct a segment tree ST. Next,
we handle the case when i = j in lines 4-5. We enumerate
i from n − 1 to 0 in line 6. For a fixed i, we first update the
ST with value par(i+ 1) at thr(i+ 1) in line 7. In lines 8-9,
we invalidate the ST if the capacity constraint of i + 1 is
violated. In line 10, we check whether inserting or′ after the
i-th violates the capacity and deadline constraints. If not,
we query the optimal j and the minimum value among
segment [det(i, or′),∞) in line 11. In line 12, we calculate
the current objective according to Eq.(16). In lines 13-14, we
update O∗, i∗ and j∗ according to the current objective O.

Note that in real-world ridesharing services, the time
period from the pickup to the delivery of a request is
usually bounded and reasonably short. Hence in practice,
for a given i, the number of j which may lead to a feasible
insertion is bounded by a constant and these positions
can be maintained by dynamic structures, e.g. fenwick tree
(dynamic version). With the dynamic index structures, we
can only maintain the feasible j, which leads to a O(1)
maintain time.

TABLE 6: Values of notations in Example 4.
index 0(ow) 1(or1 ) 2(or2 ) 3(dr1 ) 4(or3 ) 5(dr3 ) 6(dr2 )
thr(·) 5.5 7.4 4.5 6.3 5.8 3.3 −1

mobj(·, 6) 24.2 24.2 24.2 24.2 24.2 24.2 24.2
par(·) 29.5 27.6 30.5 30.7 30.7 25.5 25

(a) Segment structure when i=5. (b) Segment structure when i=4.

(c) Segment structure when i=3. (d) Segment structure when i=2.

(e) Segment structure when i=1. (f) Segment structure when i=0.

Fig. 5: Segment structures in Example 4.

Example 4. Back to the settings in Example 1. We aim to find the
minimum maximum flow time of requests. Table 6 summarizes
the values after pre-calculation. We have obtained the values
of mobj(·, 6) in Table 4. The values of thr(·) and par(·) are
calculated by their definitions in Sec. 5.2 and Sec. 5.3, respectively.

Fig. 5 shows the data structure based on thr(·) and its stored
information while enumerating i. In each figure the values over
the axis record the values of par(k) for k from i + 1 to n = 6
and the value in purple represents the newly inserted one. When
i = 5, par(6) = 25 and we update 25 in the structure, as shown
in Fig. 5a. Then we query the optimal par(j) from the segment
[det(5, or′),∞) = [8.5,∞) (blue curve in Fig. 5a). The query
returns∞ (which means such j does not exist) and we do not up-
date the optimal route O∗. For i = 4, par(5) = 25.5 is updated.
Observe that det(4, or′) > slk(4), we skip the query. For i = 3,
we update par(4) = 30.7 and the query returns∞, which is sim-
ilar to the case of i = 5. When i = 2, par(3) = 30.7 is updated.
The query from segment [det(2, or′),∞) = [6.3,∞) returns the
optimal par(j) = 30.7 with j = 3. In this case the objective is
max{mobj(0, 6), det(2, or′) + max{mobj(3, 6), 30.7}} = 37
and the corresponding optimal insertion is (2, 3). For the case i =
1, 30.5 is updated and the query from segment [det(1, or′),∞)
returns the optimal par(j) = 25.5 with j = 5. In this case the
segment (1, 5) leads to the objective 26.3. Similarly the case i = 0
leads to the objective 28.3. Finally we have the minimum objective
is 26.3 with the optimal insertion (1, 5).

Complexity Analysis. We analyze the complexity of Alg. 4
with two implementations, segment tree and fenwick tree.

Complexity of Alg. 4 with Segment Tree Implementation. Pre-
calculations in line 2 take O(n) time. In line 3, it takes
O(n log n) to construct a segment tree ST. Lines 4-5 take
O(n) time. In the iterations in lines 6-14, each operation
(update in line 7, invalidation in line 9 and query in line 11)
on the segment tree takes at most O(log n) time, and other
lines take O(1) time. Hence the total time complexity of
Alg. 4 implemented with a segment tree is O(n log n). Since
the pre-calculation only consumes O(n) space and the size
of a segment tree is also O(n), the total space complexity of
Alg. 4 implemented with a segment tree is O(n).

Complexity of Alg. 4 with Fenwick Tree Implementation.
Compared with the segment tree implementation, we con-
struct a fenwick tree [13] (dynamic version) in O(n) in line
3. With the fenwick tree implementation, the update (line 7),

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on April 08,2021 at 09:34:15 UTC from IEEE Xplore.  Restrictions apply. 



1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3027200, IEEE
Transactions on Knowledge and Data Engineering

8

validation (line 9) and query (line 11) operations take O(1)
time. The time complexity of the other lines is the same as
that of Alg. 4 with segment tree implementation. Finally, the
time complexity of Alg. 4 with fenwick tree implementation
is O(n). As the size of fenwick tree is also O(n), the total
space complexity is the same as that of Alg. 4 with segment
tree implementation, which is O(n).

6 EXTENSION TO SUM FLOW TIME
In this section, we extend the partition-based framework
and segment-based optimization technique to the objective
of sum flow time. We can use the same way to check the
capacity and deadline constraints as in Sec. 4 and Sec. 5
because the constraints are the same for each objective.
Therefore, we mainly focus on efficiently calculating the
objective value, as will be explained in the following sub-
sections.

6.1 Extension of Partition-based Framework
Within the partition framework, the objective of minimizing
the sum flow time, i.e., Eq.(1), is rewritten as

OBJ(SR+) = sf1 + sf2 + sf3 + sf4 (17)

where
sf1 =

∑
r∈R1

flw(r), sf2 =
∑
r∈R2

flw(r),

sf3 =
∑
r∈R3

flw(r), sf4 =
∑
r∈R4

flw(r).

Now we show how to calculate sf1, sf2, sf3 and sf4
in O(1) time when enumerating i and j. Similar to the
notation mobj(i, j) in Sec. 4.2.2, we use sobj(i, j) to denote
the sum of the flow time (flw(r)) of the requests (r), whose
destinations are between the i-th location and j-th location.
Further denote num(i, j) as the number of such requests,
whose destinations are between the i-th location and j-th
location. It takes O(n2) time to pre-calculate sobj(i, j) and
num(i, j) by enumerating i from 0 to n and j from i to n.

Next, we show how to calculate sf1, sf2, sf3 and sf4 in
two cases: i < j and i = j.
Calculations in Case of i < j.

(1) Calculating sf1: All the requests in R1 (whose desti-
nation is before the i-th location) are not influenced by the
detour. Thus, sf1 can be calculated as

sf1 = sobj(0, i). (18)

(2) Calculating sf2: All the requests in R2 (whose desti-
nation is between the i-th and the j-th locations) are only
influenced by the detour of inserting i. Specifically, the
flow time (flw(r)) of each request in R2 would increase
by det(i, or′). Thus sf2 can be calculated as

sf2 = num(i+ 1, j)× det(i, or′) + sobj(i+ 1, j). (19)
(3) Calculating sf3: All the requests in R3 (whose

destination is after the j-th location) are influenced by
the detours of inserting i and j. Specifically, the flow
time (flw(r)) of each request in R3 would increase by
det(i, or′) + det(j, dr′). Thus sf3 can be calculated as

sf3 = num(j + 1, n)× [det(i, or′) + det(j, dr′)] + sobj(j + 1, n).
(20)

(4) Calculating sf4: R4 only contains the new request r′.
Intuitively, it would take arr(j) + det(i, or′) time to reach
the j-th location, due to detour of inserting i. It will take

another dis(lj , dr′) time to reach the destination of r′. Thus,
according to the definition of flow time (flw(r)), we have

sf4 = arr(j) + det(i, or′) + dis(lj , dr′)− tr′ . (21)

Calculations in Case of i = j.
(1) Calculating sf1: sf1 is still sobj(0, i) since the re-

quests in R1 are not influenced by detour.
(2) Calculating sf2: sf2 is 0 because R2 contains no

requests when i = j.
(3) Calculating sf3: Denote det(i, r′) as the detour when

i = j. Then det(i, r′) can be calculated as

dis(li, or′) + dis(or′ , dr′) + dis(dr′ , li+1)− dis(li, li+1).

Since all the requests in R3 are influenced by this detour,
their flow time would increase by det(i, r′). Thus mf3 can
be calculated as num(i+ 1, n)× det(i, r′) + sobj(i+ 1, n).

(4) Calculating sf4: For sf4, the worker takes arr(i) +
dis(li, or′) time to reach or′ and then another dis(or′ , dr′)
time to reach dr′ . Thus sf4 can be calculated as

sf4 = arr(i) + dis(li, or′) + dis(or′ , dr′)− tr′ . (22)

Algorithm Details. We show how to extend the naive DP
algorithm to the objective of minimizing the sum flow time.
Back to Alg. 3, we need to pre-calculate an extra array
num(i, j) in line 2. In the iterations of lines 3-10, we will
calculate sf1, sf2, sf3, sf4 by Eq.(18)-Eq.(22) in line 7 and
then calculate the objective by summing sf1 to sf4 in line 8.
All the other lines remain the same as in Alg. 3.

Example 5. Back to Example 1. Suppose we want to calculate the
sum flow time of insertion (1, 5). Since sobj(·, ·) and num(·, ·)
can be simply obtained as shown in Sec. 6.1, we omit their
calculations and focus on calculating sf1, sf2, sf3 and sf4. First
the sum flow time of requests in R1 is sf1 = sobj(0, 1) = 0.
Since det(1, or′) = 0.8, the sum flow time of requests in R2 is
sf2 = num(2, 5) × det(i, or′) + sobj(2, 5) = 34 (Eq.(19)).
As for the requests in R3, we have det(1, or′) = 0.8 and
det(5, dr′) = 1.3. Thus, sf3 = num(6, 6) × [det(i, or′) +
det(j, dr′)] + sobj(6, 6) = 0.8 + 1.3 + 24.2 = 26.3. To obtain
the sum flow time of requests in R4, we first get arr(5) = 18.2,
det(1, or′) = 2 + 4.5 − 5.7 = 0.8 and dis(l5, dr′) = 4.5.
Substituting these results into Eq.(21), we have that the flow
time of the new request (R4) is sf4 = arr(5) + det(1, or′) +
dis(l5, dr′) = 23.5. Finally the sum flow time for insertion (1, 5)
is 0 + 34 + 26.3 + 23.5 = 83.8.

Complexity Analysis. The time complexity of the extension
is still O(n2), since it takes O(n2) time to pre-calculate the
auxiliary array num(·, ·) and the calculation of the objective
value is O(1).

6.2 Extension of Segment-based DP algorithm
To extend the segment-based DP algorithm, we also use the
same way to check the constraints and only focus on the
objective calculation in the following.

Basic Idea. Here we only focus on the case of i < j because
the case of i = j can be done inO(n) naturally. As in Sec. 5.3,
we only need a column (j = n) of the arrays sobj and num
to compute the objective. Specifically, we can first compute
sf1 + sf2 + sf3 and then add it to sf4. This is because sf4

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on April 08,2021 at 09:34:15 UTC from IEEE Xplore.  Restrictions apply. 



1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3027200, IEEE
Transactions on Knowledge and Data Engineering

9

does not relate to either sobj or num. An optimized way to
calculate sf1 + sf2 + sf3 is as follows.

sf1 + sf2 + sf3

= [sobj(0, i) + sobj(i+ 1, j) + sobj(j + 1, n)]+

[num(i+ 1, j) + num(j + 1, n)]× det(i, or′)+
num(j + 1, n)× det(j, dr′)

= sobj(0, n) + num(i+ 1, n)× det(i, or′)+
num(j + 1, n)× det(j, dr′). (23)

Summing Eq.(23) and Eq.(21), we can rewrite Eq.(17) as:

OBJ(SR+) = sf1 + sf2 + sf3 + sf4

= sobj(0, n) +
(
num(i+ 1, n) + 1

)
· det(i, or′)− tr′ + spar(j),

(24)

where spar(j) is the sum of all the terms related to j, i.e.,
spar(j) = num(j+1, n)×det(j, dr′)+arr(j)+dis(lj , dr′).

According to Eq.(24) and the observations on the con-
straints in Sec. 5.2, we can finally rewrite Eq.(16) as:

sobj(0, n)+
(
num(i+ 1, n) + 1)× det(i, or′

)
− tr′

+ min
i<j<brk(i),thr(j)≥det(i,or′ )

{spar(j)}. (25)

In Eq.(25), only the last term is related to j. Hence the sum
of other terms is constant for a fixed j. We can also apply
segment tree or fenwick tree to efficiently query the result
of the last term as in Sec. 5.3.
Algorithm Details. In the extended version of Alg. 4, we do
not need to calculate mobj(·, n) in line 2 any more. Instead,
we calculate num(·, n) and sobj(·, n). In line 7 and line 11,
we maintain the value of spar(j) rather than par(j). In line
12, we calculate the objective by Eq.(25). All the other lines
remain the same as in Alg. 4.
Complexity Analysis. The time complexity of the extended
version is the same as the original one, since each line
takes the same time. For instance, the time complexity is
O(n log n) by segment tree and O(n) by fenwick tree.
7 EXPERIMENTAL STUDY
This section presents the evaluation of our algorithms.
7.1 Experimental Setup

Datasets. We experiment with two real datasets (Table 7).
The first dataset [5] (denoted by Taxi) is the trip records

of taxis in New York City, which has over 517k requests
in a single day (2nd row in Table 7). We use the same
methods as in [5], [14] to process these requests. Since there
is no information about the workers, we uniformly generate
the workers’ locations on the road network in Taxi. We
also generate the capacities of the workers by a Gaussian
distribution whose mean varies from 3 to 20 (2nd row
of Table 8). Considering that short trips dominate in the
requests, we vary the value of er − tr from 10 to 30, which
is the period from release time to deadline of a request
(4th row of Table 8). To test the algorithms with different
amounts of requests, we extract the first 20k to 100k requests
for evaluation (3rd row of Table 8). To test the scalability of
the algorithms, we extract the first 100k to 500k requests
for evaluation (5th row of Table 8). Note the number of
requests here denotes the total number of requests instead
of the number of requests assigned to one worker (i.e., n).
The default settings are marked in bold.

TABLE 7: Statistics of datasets.
Dataset Space #(Requests) #(Vertices) #(Edges)

Taxi Road network 517,100 807,795 2,100,632
Parcel Euclidean space 345,849 12,487 −

TABLE 8: Parameter settings.
Parameters Settings

Capacity cw
Taxi: 3, 4, 6, 10, 20

Parcel: 80, 100, 120, 140, 160

Number of requests Taxi: 20k,40k,60k,80k,100k
Parcel: 2k,4k,6k,8k,10k

Time period from release time
to deadline er − tr (minute)

Taxi: 10, 15, 20, 25, 30
Parcel: original information

Scalability Taxi: 100k,200k,300k,400k,500k
Parcel: 60k,120k,180k,240k,300k

The second dataset [14] (denoted by Parcel) comes from
Cainiao [29] , a well-known parcel delivery platform in
China. The dataset contains the origins and the destinations
as well as the deadline information of the parcels (requests)
in a day in Shanghai (3rd row in Table 7). In Parcel, the
distance between two locations is their Euclidean distance.
We pre-process Parcel in a similar way to Taxi and the
parameter settings are shown in Table 8. In total 150 work-
ers (5, 000 for scalability) are uniformly generated on the
euclidean space to deliver the requests. The only difference
is that we directly use the deadline information of requests
in Parcel.

Compared Algorithms. We evaluate the performance of the
following algorithms.

(1) BF (Alg. 1) is an O(n3)-time insertion operator.
(2) NDP (Alg. 3) is an O(n2)-time insertion operator by

naive dynamic programming (DP).
(3) ST (Alg. 4 with segment tree implementation) is an

O(n log n)-time insertion operator by DP and segment tree.
(4) FT (Alg. 4 with fenwick tree implementation) is an

O(n)-time insertion operator by DP and fenwick tree.
(5) Kinetic [2] is an existing O(n2)-time insertion opera-

tor for minimizing the total travel time.
(6) LDP [5] is the state-of-the-art O(n)-time insertion

operator for minimizing the total travel time.
Note that LDP and Kinetic are only applicable to min-

imizing the total travel time. Hence we exclude these two
algorithms in the experiments of other objectives.

Implementation. The experiments are conducted on a
server with 40 Intel(R) Xeon(R) E5 2.30GHz processors with
128GB memory. All of the algorithms are implemented in
GNU C++. Each experiment is repeated 30 times and we
show the average results.

Metrics. We integrate the above insertion algorithms into a
widely used route planning solution to dynamic rideshar-
ing [1], [2], [5]. Upon arrival of a new request, the solution
inserts a new request to all possible workers who can pick
up the request using the insertion operator and greedily
returns the best insertion locations and the corresponding
worker. As previous works like [30], [31], we compare the
memory and time cost of such a route planning solution
with different implementations of the insertion operator on
real-world large-scale datasets. Specifically, we report the
maximum memory cost during insertion and the total time of
all the insertions when using different insertion operators
for ridesharing. As for the memory cost, we only consider
the memory caused by insertion operators and exclude the
common memory like spatial indices and road network.

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on April 08,2021 at 09:34:15 UTC from IEEE Xplore.  Restrictions apply. 



1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3027200, IEEE
Transactions on Knowledge and Data Engineering

10

Capacity

3 4 6 10 20

T
im

e(
se

cs
)

0

500

1000

1500

2000

2500

3000
BF
NDP
ST
FT

(a) Time for maximum flow time.
Capacity

3 4 6 10 20

T
im

e(
se

cs
)

0

500

1000

1500

2000

2500

3000

3500
BF
NDP
ST
FT
Kinetic
LDP

(b) Time for total travel time.

Capacity

3 4 6 10 20

T
im

e(
se

cs
)

0

500

1000

1500

2000

2500
BF
NDP
ST
FT

(c) Time for sum flow time.
Capacity

3 4 6 10 20

M
em

or
y(

K
B

)

0

10

20

30

40

50

60

70

BF
NDP
ST
FT

(d) Memory for sum flow time.
Fig. 6: Results of varying capacity of workers on Taxi.

Capacity

80
 

10
0

12
0

14
0

16
0

T
im

e(
se

cs
)

101

102

103

104

BF
NDP
ST
FT

(a) Time for maximum flow time.
Capacity

80
 

10
0

12
0

14
0

16
0

T
im

e(
se

cs
)

101

102

103

104

BF
NDP
ST
FT
Kinetic
LDP

(b) Time for total travel time.

Capacity

80
 

10
0

12
0

14
0

16
0

T
im

e(
se

cs
)

101

102

103

104

BF
NDP
ST
FT

(c) Time for sum flow time.
Capacity

80
 

10
0

12
0

14
0

16
0

M
em

or
y(

K
B

)

0

500

1000

1500

2000

2500

BF
NDP
ST
FT
Kinetic
LDP

(d) Memory for sum flow time.
Fig. 7: Results of varying capacity of workers on Parcel.

7.2 Experimental Results

Due to the limit of space, we omit the figures of memory
consumption when minimizing the maximum flow time
and total travel time, which can be found in [14]. Note that
the memory trend of all these three objectives are similar.

Impact of Capacity of Workers. Fig. 6 and Fig. 7 show the
results of varying the capacity of workers on Taxi and Par-
cel, respectively. FT has the shortest running time in all of
the three objectives, which is up to 6.4 and 301.8 times faster
than the others on Taxi and Parcel, respectively. Specifically,
when minimizing the total travel time, FT is sometimes
slightly faster than LDP, although both algorithms have a
linear time complexity. With the increase in the capacity of
workers, the time cost of BF grows and the time costs of
the other algorithms remain stable on Taxi. On Parcel, the
time and memory costs of all the algorithms are stable. This
may be because with a small capacity (on Taxi) the length of
routes is dominated by the capacity while when the capacity
increases, the length of routes is limited by the number of
the requests. The memory costs of all the algorithms except
NDP remain almost the same when varying the capacity of
workers, while BF consumes the least memory. Note that
the memory cost of NDP changes in a similar trend to that
of ST and FT but is more notable, due to its O(n2) space

|Request|

20
00

0 

40
00

0 

60
00

0 

80
00

0 

10
00

00

T
im

e(
se

cs
)

0

200

400

600

800

1000

1200

1400
BF
NDP
ST
FT

(a) Time for maximum flow time.
|Request|

20
00

0 

40
00

0 

60
00

0 

80
00

0 

10
00

00

T
im

e(
se

cs
)

0

500

1000

1500
BF
NDP
ST
FT
Kinetic
LDP

(b) Time for total travel time.

|Request|

20
00

0 

40
00

0 

60
00

0 

80
00

0 

10
00

00

T
im

e(
se

cs
)

0

200

400

600

800

1000
BF
NDP
ST
FT

(c) Time for sum flow time.
|Request|

20
00

0 

40
00

0 

60
00

0 

80
00

0 

10
00

00

M
em

or
y(

K
B

)

0

10

20

30

40

50

BF
NDP
ST
FT

(d) Memory for sum flow time.
Fig. 8: Results of varying # of requests on Taxi.

|Request|
20

00
 

40
00

 

60
00

 

80
00

 

10
00

0

T
im

e(
se

cs
)

100

101

102

103

104

105

BF
NDP
ST
FT

(a) Time for maximum flow time.
|Request|

20
00

 

40
00

 

60
00

 

80
00

 

10
00

0

T
im

e(
se

cs
)

100

101

102

103

104

105

BF
NDP
ST
FT
Kinetic
LDP

(b) Time for total travel time.

|Request|

20
00

 

40
00

 

60
00

 

80
00

 

10
00

0

T
im

e(
se

cs
)

100

101

102

103

104

105

BF
NDP
ST
FT

(c) Time for sum flow time.
|Request|

20
00

 

40
00

 

60
00

 

80
00

 

10
00

0

M
em

or
y(

K
B

)

0

500

1000

1500

2000

2500

3000

3500
BF
NDP
ST
FT

(d) Memory for sum flow time.
Fig. 9: Results of varying # of requests on Parcel.

complexity. ST and FT only consume slightly more memory
than BF (less than 80 KB), which validates the memory
efficiency of these two algorithms.

Impact of Number of Requests. Fig. 8 and Fig. 9 show the
results of varying the number of requests on Taxi and Par-
cel, respectively. FT still outperforms the other algorithms
in terms of the average running time when minimizing the
maximum/sum flow time, i.e., 2.2 and 998.1 times faster
than BF on Taxi and Parcel, respectively. When minimizing
the total travel time, FT is faster than LDP on Taxi and
is as fast as LDP on Parcel and both of them are faster
than the other algorithms. With the increasing number of
requests, the time costs of all the algorithms increase on
both Taxi and Parcel. This is because with the increase of
number of requests, workers tend to obtain a longer route
and thus need longer time to complete the route. As for
memory, BF still has the lowest memory consumption. NDP
performs the worst as it consumes O(n2) memory to store
the variables. The gap of memory cost among algorithms
(except NDP) is marginal (less than 0.1 MB).

Impact of Deadline of Requests. Fig. 10 shows the results of
varying the deadline on Taxi. FT is again the fastest among
all the algorithms, which is up to 4.6 times faster. With
the increase of er − tr, the time costs of all the algorithms

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on April 08,2021 at 09:34:15 UTC from IEEE Xplore.  Restrictions apply. 



1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3027200, IEEE
Transactions on Knowledge and Data Engineering

11

Deadline

10 15 20 25 30

T
im

e(
se

cs
)

200

400

600

800

1000

1200

1400

1600

1800
BF
NDP
ST
FT

(a) Time for maximum flow time.
Deadline

10 15 20 25 30

T
im

e(
se

cs
)

0

500

1000

1500

2000
BF
NDP
ST
FT
Kinetic
LDP

(b) Time for total travel time.

Deadline

10 15 20 25 30

T
im

e(
se

cs
)

200

300

400

500

600

700

800

900

BF
NDP
ST
FT

(c) Time for sum flow time.
Deadline

10 15 20 25 30

M
em

or
y(

K
B

)

0

20

40

60

80

100
BF
NDP
ST
FT

(d) Memory for sum flow time.
Fig. 10: Results of varying er − tr on Taxi.

|Request|

10
00

00

20
00

00

30
00

00

40
00

00

50
00

00

T
im

e(
se

cs
)

0

2000

4000

6000

8000

10000

12000

BF
NDP
ST
FT

(a) Maximum flow time on Taxi.
|Request|

60
00

0 

12
00

00

18
00

00

24
00

00

30
00

00

T
im

e(
se

cs
)

#105

0

0.5

1

1.5

2

NDP
ST
FT

(b) Maximum flow time on Parcel.

|Request|

10
00

00

20
00

00

30
00

00

40
00

00

50
00

00

T
im

e(
se

cs
)

0

500

1000

1500 BF
NDP
ST
FT

(c) Sum flow time on Taxi.
|Request|

60
00

0 

12
00

00

18
00

00

24
00

00

30
00

00

T
im

e(
se

cs
)

#105

0

0.5

1

1.5

2

NDP
ST
FT

(d) Sum flow time on Parcel.

|Request|

10
00

00

20
00

00

30
00

00

40
00

00

50
00

00

T
im

e(
se

cs
)

0

2000

4000

6000

8000

10000

12000

14000
BF
NDP
ST
FT
Kinetic
LDP

(e) Total travel time on Taxi.
|Request|

60
00

0 

12
00

00

18
00

00

24
00

00

30
00

00

T
im

e(
se

cs
)

#105

0

0.5

1

1.5

2

NDP
ST
FT
Kinetic
LDP

(f) Total travel time on Parcel.
Fig. 11: Results of scalability test on # of requests.

increase, while those of FT and LDP increase slower than BF,
Kinetic, ST and NDP. This is because with a larger deadline,
more requests can be inserted into the route, and FT and
LDP have a lower time complexity. The memory costs of
all the algorithms remain stable with the increase of the
deadlines of requests except NDP. Again BF has the lowest
memory costs, while the memory costs of ST and FT are
only slightly higher (less than 20 KB more memory). NDP
consumes the most memory. We also observe the memory
costs of all algorithms decrease in the end. The reason is as
follows. When er − tr is 25-30 minutes, each request has
more feasible workers for insertion. Thus, the number of
requests assigned to each worker is more balanced, which
leads to less (peak) memory cost.

Scalability. Fig. 11 shows the experimental results of time

cost on scalability. On Parcel, BF and NDP fail to terminate
in two days and hence we omit their results. Among all
the three objectives, FT is always the most efficient, and
ST is often the runner-up (less efficient than LDP when
minimizing the total travel time). The results show that both
ST and FT are fit for large-scale datasets.
Comparison between Datasets. Comparing the results on
Taxi and Parcel, we have the following observations.
• On both datasets FT outperforms the other algo-

rithms in terms of running time, except for Fig. 9b
where LDP runs as fast as FT.

• All the algorithms consume more space on Parcel
(40-2500 KB) than on Taxi (10-140 KB). This may be
because the requests in Parcel have a larger capacity.
This leads to more feasible insertion locations for
each request and increases the memory cost.

Summary of Experimental Results. We summarize our
experimental findings as follows.
• Insertion with the straightforward implementation

(i.e., BF) is impractical for real-world ridesharing
applications (more than 24 hours on Parcel).

• Our algorithms NDP, ST and FT are 1.5 to 6.4 times
faster than BF on Taxi, and are 4.3 to 998.1 times
faster than BF on Parcel.

• Our ST algorithm is up to 6.8 times faster than NDP
on two datasets, while our FT algorithm is even
faster, i.e., up to 8.3 times faster than NDP.

• Our FT algorithm is the most efficient when mini-
mizing the maximum/sum flow time. For the other
objective, our algorithm FT runs faster than LDP,
the state-of-the-art insertion operator to minimize the
total travel time, in most of the experiments.

• The memory costs of ST and FT are only slightly
larger (within 0.1 MB) than the memory usage of BF.

8 CONCLUSION

In this paper, we focus on the insertion operator, a widely
used core operation in real-world dynamic ridesharing
applications. Specifically, we study the efficient insertion
operation for three practical objectives: minimizing the max-
imum/sum flow time of the requests and the total travel
time of the workers. A straightforward implementation of
the insertion operator takesO(n3) time to obtain the optimal
insertion locations. To improve the efficiency, we propose
a partition-based framework and devise a novel dynamic
programming based insertion operator to reduce the time
complexity of the generic insertion operator from O(n3) to
O(n2). Leveraging fenwick tree, we further propose a linear-
time insertion operator for all the three objectives. Extensive
experiments on real datasets validate the efficiency and scal-
ability of our insertion operator. Particularly, the insertion
operator can be accelerated by 1.5 to 998.1 times on urban-
scale datasets.

REFERENCES

[1] S. Ma, Y. Zheng, and O. Wolfson, “T-share: A large-scale dynamic
taxi ridesharing service,” in ICDE, 2013, pp. 410–421.

[2] Y. Huang, F. Bastani, R. Jin, and X. S. Wang, “Large scale real-time
ridesharing with service guarantee on road networks,” PVLDB,
vol. 7, no. 14, pp. 2017–2028, 2014.

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on April 08,2021 at 09:34:15 UTC from IEEE Xplore.  Restrictions apply. 



1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3027200, IEEE
Transactions on Knowledge and Data Engineering

12

[3] R. S. Thangaraj, K. Mukherjee, G. Raravi, A. Metrewar, N. Anna-
maneni, and K. Chattopadhyay, “Xhare-a-ride: A search optimized
dynamic ride sharing system with approximation guarantee,” in
ICDE, 2017, pp. 1117–1128.

[4] L. Chen, Q. Zhong, X. Xiao, Y. Gao, P. Jin, and C. S. Jensen, “Price-
and-time-aware dynamic ridesharing,” in ICDE, 2018, pp. 1061–
1072.

[5] Y. Tong, Y. Zeng, Z. Zhou, L. Chen, J. Ye, and K. Xu, “A unified
approach to route planning for shared mobility,” PVLDB, vol. 11,
no. 11, pp. 1633–1646, 2018.

[6] L. Häme, “An adaptive insertion algorithm for the single-vehicle
dial-a-ride problem with narrow time windows,” European Journal
of Operational Research, vol. 209, no. 1, pp. 11–22, 2011.

[7] M. Grötschel, S. O. Krumke, and J. Rambau, Online Optimization of
Large Scale Systems, 2001.

[8] J. J. Jaw, A. R. Odoni, H. N. Psaraftis, and N. H. M. Wilson, “A
heuristic algorithm for the multi-vehicle advance request dial-a-
ride problem with time windows,” Transportation Research Part B,
vol. 20, no. 3, pp. 243–257, 1986.

[9] I. Ioachim, J. Desrosiers, Y. Dumas, M. M. Solomon, and D. Vil-
leneuve, “A request clustering algorithm for door-to-door hand-
icapped transportation,” Transportation Science, vol. 29, no. 1, pp.
63–78, 1995.

[10] M. W. P. Savelsbergh and M. Sol, “The general pickup and delivery
problem,” Transportation Science, vol. 29, no. 1, pp. 17–29, 1995.

[11] J. F. Cordeau and G. Laporte, “The dial-a-ride problem: models
and algorithms,” Annals of Operations Research, vol. 153, no. 1, pp.
29–46, 2007.

[12] Q. Tao, Y. Zeng, Z. Zhou, Y. Tong, L. Chen, and K. Xu, “Multi-
worker-aware task planning in real-time spatial crowdsourcing,”
in DASFAA, 2018, pp. 301–317.

[13] P. M. Fenwick, “A new data structure for cumulative frequency
tables,” Software: Practice and Experience, vol. 24, no. 3, pp. 327–336,
1994.

[14] Y. Xu, Y. Tong, Y. Shi, Q. Tao, K. Xu, and W. Li, “An efficient
insertion operator in dynamic ridesharing services,” in ICDE,
2019, pp. 1022–1033.

[15] M. Firat and G. J. Woeginger, “Analysis of the dial-a-ride problem
of hunsaker and savelsbergh,” Operations Research Letters, vol. 39,
no. 1, pp. 32–35, 2011.

[16] B. Hunsaker and M. Savelsbergh, “Efficient feasibility testing for
dial-a-ride problems,” Operations Research Letters, vol. 30, no. 3, pp.
169–173, 2002.

[17] M. Diana and M. M. Dessouky, “A new regret insertion heuristic
for solving large-scale dial-a-ride problems with time windows,”
Transportation Research Part B, vol. 38, no. 6, pp. 539–557, 2004.

[18] L. Coslovichaba, “A two-phase insertion technique of unexpected
customers for a dynamic dial-a-ride problem,” European Journal of
Operational Research, vol. 175, no. 3, pp. 1605–1615, 2006.

[19] Y. Tong, J. She, B. Ding, L. Wang, and L. Chen, “Online mobile
micro-task allocation in spatial crowdsourcing,” in ICDE, 2016, pp.
49–60.

[20] Y. Tong, L. Wang, Z. Zhou, L. Chen, B. Du, and J. Ye, “Dynamic
pricing in spatial crowdsourcing: A matching-based approach,” in
SIGMOD, 2018, pp. 773–788.

[21] K. Li, L. Chen, and S. Shang, “Towards alleviating traffic conges-
tion: Optimal route planning for massive-scale trips,” in IJCAI,
C. Bessiere, Ed., 2020, pp. 3400–3406.

[22] L. Chen, S. Shang, B. Yao, and J. Li, “Pay your trip for traffic
congestion: Dynamic pricing in traffic-aware road networks,” in
AAAI, 2020, pp. 582–589.

[23] L. Chen, S. Shang, C. Yang, and J. Li, “Spatial keyword search: a
survey,” GeoInformatica, vol. 24, no. 1, pp. 85–106, 2020. [Online].
Available: https://doi.org/10.1007/s10707-019-00373-y

[24] N. H. Wilson, R. Weissberg, B. Higonnet, and J. Hauser, “Ad-
vanced dial-a-ride algorithms,” Tech. Rep., 1975.

[25] S. O. Krumke, W. de Paepe, D. Poensgen, M. Lipmann,
A. Marchetti-Spaccamela, and L. Stougie, “On minimizing the
maximum flow time in the online dial-a-ride problem,” in WAOA,
2005, pp. 258–269.

[26] H. N. Psaraftis, An Exact Algorithm for the Single Vehicle Many-to-
Many Dial-A-Ride Problem with Time Windows, 1983.

[27] Y. Zeng, Y. Tong, and L. Chen, “Last-mile delivery made practical:
An efficient route planning framework with theoretical guaran-
tees,” PVLDB, vol. 13, no. 3, pp. 320–333, 2019.

[28] M. de Berg, O. Cheong, M. J. van Kreveld, and M. H. Overmars,
Computational geometry: algorithms and applications, 3rd Edition,
2008.

[29] Cainiao. [Online]. Available: https://www.cainiao.com
[30] Y. Tong, J. She, B. Ding, L. Chen, T. Wo, and K. Xu, “Online

minimum matching in real-time spatial data: Experiments and
analysis,” PVLDB, vol. 9, no. 12, pp. 1053–1064, 2016.

[31] H. Luo, Z. Bao, F. Choudhury, and S. Culpepper, “Dynamic
ridesharing in peak travel periods,” IEEE Transactions on Knowledge
and Data Engineering, 2019.

Yi Xu is currently working toward the Ph.D. de-
gree in the School of Computer Science and
Engineering, Beihang University. His research
interests include big spatio-temporal data analyt-
ics and mining, crowd intelligence, crowdsourc-
ing and privacy preserving data analytics.

Yongxin Tong received the Ph.D. degree in
computer science and engineering from the
Hong Kong University of Science and Technol-
ogy in 2014. He is currently a professor in the
School of Computer Science and Engineering,
Beihang University. His research interests in-
clude big spatio-temporal data analytics, crowd-
sourcing, crowd intelligence, federated learning,
privacy preserving data analytics and uncertain
data management. He is a member of the IEEE.

Yexuan Shi is currently working toward the
Ph.D. degree in the School of Computer Science
and Engineering, Beihang University. His major
research interests include big spatio-temporal
data analytics, crowdsourcing and privacy pre-
serving data analytics.

Qian Tao is currently working toward the Ph.D.
degree in the School of Computer Science and
Engineering, Beihang University. His major re-
search interests include big spatio-temporal data
analytics, crowdsourcing and privacy preserving
data analytics.

Ke Xu is a professor in the School of Computer
Science and Engineering, Beihang University,
China. He received his B.E, M.E. and Ph.D. de-
gree from Beihang University in 1993, 1996, and
2000, respectively. His current research interests
include phase transitions in NP-Complete prob-
lems, algorithm design, computational complex-
ity, big spatio-temporal data analytics, crowd-
sourcing and crowd intelligence.

Wei Li is a professor in the School of Computer
Science and Engineering, Beihang University,
China. He is a Member of the Chinese Academy
of Sciences and the Academia Europaea. He
was a president of Beihang University from 2002
to 2009 and a director of the State Key Lab-
oratory of Software Development Environment,
China. He received his Ph.D. degree in Com-
puter Science from the University of Edinburgh,
and his B.S. degree in Mathematics from Peking
University. His current research interests include

mathematical logic, big data, artificial intelligence, smart city, crowd-
sourcing and crowd intelligence.

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on April 08,2021 at 09:34:15 UTC from IEEE Xplore.  Restrictions apply. 

https://doi.org/10.1007/s10707-019-00373-y
https://www.cainiao.com

